

CONTENTS

REGISTRATION
ACKNOWLEDGEMENTS 2
PREFACE 3
TUTORIAL
1 Introduction to 3D 4
2 “Learning to walk and learning to fly again”
3 “Ot palaces and bungalows — A house of our own” 7
4 “Beam me up Spotty” 12
5 “Holy Exploding Cubes Batman!!" 18
6 “Faders and Sensors and Making your own Videos" 23
7 “A Player of Games, and a few loose ends” 27
REFERENCE GUIDE
a8 The user interface reference guide 37
8.1 Conventions 37
8.2 The file selector 38
8.3 The text editor 40
8.4 The alert box 41
8.5 The dialogue box 41
8.6 Guide to the screen 42
8.6.1 The status bar 42
8.6.2 The freescape controls 44
8.6.3 The view controls 44
8.6.4 The shortcut icons 45
8.6.5 The ohject editor icons 45
8.6.6 The colour panel 47

8.6.7 The debugger screen 48

10

11

12

13
14

The menus reference guide
91 The file menu

9.2 The general menu
9.3 The area menu

9.4 The object menu

9.5 The conditions menu

FCL tutorial

FCL reference guide
11.1 Introduction
11.2 Constants
11.3 Variables
11.4 Animators

FCL command reference guide

12.1 Format of guide

12.2 Alphabetical listing of FCL functions
Sound editors

Make

Appendix 1

Al
A12
A1.3
A4

Installation and Loading Instructions

Filename Extensions

Loading Objects / Worlds from the Clip-Ant Catalogue
Importing Objects from 3D Construction Kit 1.0

Appendix 2

Hints and tips

Appendix 3

Keyboard shortcuts

49
49
52
59
60
63

66

76
76
77
77
80

a1
81
83
164
169

170
170
171
171
171

172
172
174
174

REGISTRATION

It is essential to register as a 3D Construction Kit user, as support can only be given to
ragisterad owners. The registration form is included with the package.

All correspondence should be sent to Mandy Rodrigues, at the address shown below.
If a reply is required a stamped addressed envelope must be enclosed.

THE 3D CONSTRUCTION KIT USERS' CLUB

The Club is provided to offer additional help and advice for users of the 3D
Construction Kit and will consist of a bi-monthly newsletter packed full of news,
information, hints and tips on the system to allow everyone to use it to its full potential.
It will also act as a forum for users to exchange ideas and information. To apply for
membership of the Club, just fill in the relevant section of the registration card and
further details and information will be sent to you. All registration forms should be

sent to:

Mandy Rodrigues, 67 Lloyd Street, Llandudno, Gwynedd, LL30 2YP.

NOTICE

You may make only one copy of this software, for a personal working copy. Keep your
original disc in a safe place. You may not copy this manual. It is a criminal offence to
sell, hire, offer or expose for sale, or hire or otherwise distribute infringing (illegal)
copies of this computer program or its documentation and persons found doing so are
liable to criminal prosecution. Any information on piracy should be passed to

he Federation Against Software Theft (FAST), 2 Lake End Court, Taplow,
Maidenhead, Berks. SL6 0JQ.

ACKNOWLEDGEMENTS

Original concept and design:

Programming and design:

lan Andrew
Paul Gregory {Amiga & ST)

PREFACE

Preface

Not only have you purchased a tool for manipulating objects in a virtual three-
dimensional world, but also a complex, but easy-to-learn command language which

Kevin Parker (PC}) will allow you to bring the world you create to life. Although 3D Construction Kit 2.0 is
: . ; built on a complex and accurate base of mathematical concepts, it has a user-friendly
Cipatandbomes: The Kremlin interface which uses concepts familiar to everyone. By the far the best way to learn
Peter D. Ward any product, is to roll your sleeves up and get stuck in, so we've included a step-by-
Robin Ball step tutorial which will get you going. There is also a complete reference guide
Mieke V.D. Poll covering everything you always wanted to know about 3D Construction Kit 2.0 (and
Marc Epstein weren't afraid to ask!). But most of all remember, 3D Construction Kit 2.0 is about

Liam Johnston
Stephen Day

having fun, whether you are creating complex interactive worlds or just colouring a
simple scene. The only limit is your imagination.

Sue Medley

Martin Sullivan

S. Shield

S.M. Hindley

Steve Rogers - . &

Stefan Gostzke Welcome to the world of 3D Construction Kit 2.0!
Special thanks to Michael Adams

i) I'he soap-box bit : much time and energy have gone in to a product like 3D
Freescape development: Chris Andrew Construction Kit 2.0. Not just in creating the software, but in also providing on-going
i ; support for you, the User. We have not copy-protected 3D Construction Kit 2.0,

Uise manuak Jason Criaunl arsl: Coliit Basv because we feel that you should be able to make copies of the disk for your own
Sound editors: Oxford Mobius and Dave Chapman personal use. Please do not abuse our trust by giving copies to other people.
Video production: Status Visual Communications
Production: Colin Boswell and the Domark Software Group

Many thanks to Mandy Rodrigues

mm*’ is a registered trademark of Incentive Software.

Program and documentation copyright @ 1992 Dimension International Limited,
Zephyr One, Calleva Park, Aldermaston, Berkshire RG7 4QW.,

“ m‘:"'_ i > 5_

1: An Introduction to Three Dimensions

Before we get to the tutorial section of the manual it is important to familiarise
ourselves with the concepts and terms we will be using. Don't worry if some of this
seems confusing at first — a couple of sessions with the program and the tutorial and
you'll be talking jargon with the best of them. A couple of sessions after that and you
might even understand what you're talking about. That's the way the human brain
works, and it's got you this far so its way too late to worry now.

The younger reader of this weighty but zesty tome will have no trouble with three
dimensional geometry {scary words — but their bark’s worse than their bite). Those,
however, whose memories of geometry involve slates, abacuses, or monotonous
teachers in equally monotonous suits, and those who had actually forgotten what the
word geometry means will be pleased to hear that all is to be made clear in the next
few pages.

If you have an understanding of the concepts of the program, or if you are an
experienced user of this progfam's illustrious predecessor, simply turn the machine on
and skip to the section 2 of the tutorial. Those who are itching to start can aiso do this
and read the “why"'s later... this is one of the reasons why books are still a medium to
be reckoned with.

One, two, and three dimensions

Imagine a line, or better yet draw one. Imagine a creature who exisits on that line. The
only way the creature can move is along the line. It can go forwards or backwards
along the line. If we want to tell someone else where the creature is we only need one
number to tell them. Provided we both measure from the same point on the line — the
zero point, and we both measure in the same units {centimetres, inches, kilometres — it
doesn't matter so long as we are all using the same unit), we need simply say “The
creature is 7 units down the line” and we will be talking about the same place. This
number of units will change as the creature moves — the number varies from time to
time, so we call it a variable. For distance on the line, we will call the variable “X". It's
not a good name as names go, but James Bond never asked “Q" about his name so
we'll simply follow his example here.

The creature we have been describing is moving in one dimension — it is moving on a
line and can only go forwards and backwards. Now let us imagine that the creature
learns how to move not just forwards and backwards, but to move sideways as well.
We now need to say not only how far down the line the creature is but how far to the
side of it it is. We need two numbers, another variable. History has named this second
variable “Y". '

TUTORIAL 1

We are now at a stage we can recognise: the variables to describe where a point is in
a space are known as co-ordinates. Map references are usually two co-ordinates (the
"X" and “Y" or “along” and "up” to the more language minded, or even “latitude” and
“longitude” for those of a cartography bent). Battieships, one of the eldest games
(certainly older than the actual battleships themselves!) is played by players who give
oach other “X” and “Y" co-ordinates to exchange shots. Even when we refer to “row
live, column three” we are expressing two dimensional co-ordinates.

Lat us imagine now that the creature develops a third way of moving. It realises that
not enly can it move forwards, backwards, and sideways, it can also move up and
down. We now need a third variable, one that expresses how far above the line the
creature is. It will come as no surprise to those that know their alphabet that this
variable is named “2”. It is the third co-ordinate that allows us to express where an
object is in three dimensional space. Now go back and read that last sentence again.

S0, a quick recap/bluffers guide. If we are looking at a horizontal line on a page from
nbove, the X co-ordinate tells us how far along the line to go, the Y co-ordinate tells us
how far up the page to go, and the Z co-ordinate tells us how far above the page to go.

That's the principle. The problem is that a computer screen is a two-dimensional
image — it doesn't have depth, so we must simulate three dimensions with complex
mathematics (the same way that an artist does subconsciously when they draw a
three dimensional space on a piece of paper). On the screen our X tells us how far
nlong the object is, our Y is its height from the round line and our Z is how far away
from us the object is. To put it yet another way (confusing the issue even more) the “X
- Axis" is the left-right line, the *Y — Axis" is the up down line, and the “Z — Axis”
slarts between your eyes and ends in the mysterious world “inside” the screen. All
axos intersect at a single point: the zero point — co-ordinates X=0, Y=0, Z=0, or (0,0,0)
for short. It is conventional for co-ordinates to be put in brackets, this is to confuse
students of language who were getting cocky after the X-Y-Z trick. In terms of 3D
Construction Kit 2.0, the zero point is at ground level on the “front” left of the screen.
Believe me, this will fall into place once you see it in practice.

Worlds, areas, and objects

30 Construction Kit 2.0 allows you to create a world. This is a pretty mammoth task. It
took God six days and even he/she/it/they (delete with caution) needed a rest
nfterwards. To make the task easier, a world in 3D Construction Kit 2.0 is made out of
n number of linked areas. An area might be the inside of a house, or a housing estate,
or a weird cosmic plane inhabited by spiky eight-legged estate agents, the only
limitation to what the area is is your imagination. Just like in the real world, areas can
b completely different (if you don't believe me try a quick America-India-Albania
round trip). There is one similarity between these areas however : they all

contain objects.

Objects are cubes and spheres and hexagons and lines and all sorts of prettily named
shapes — they are the building bricks which we group together to make houses, tables,
giant teaspoons, purple haddock, or whatever takes our fancy. Once we have grouped
a few objects together to make something we call this something a group. Nothing too
shocking about that.

Within the confines of 3D Construction Kit 2.0 we are offered many objects which we
can bend, stretch, move, colour, twist, turn, and group together pretty much as we like.
Remember:- the objects are the components that we build the groups out of; the
groups are placed in the areas; the world consists of all the areas. Understanding
these terms now will save much head scratching and nail chewing later.

Well, that's it for the introduction — see it wasn't that painful after all. Now there's no
time for further stalling, get that program running... this is where the fun starts.

2: Learning to walk again and then learning to fly
for the first time

Turn on your machine and run the program. Loading instructions for each version of
30 Construction Kit 2.0 are different but if you are having any trouble you will find them
In Appendix One at the back of this manual.

The screen should look like fig. 2.1 (only in
colour — obviously!). If the screen looks
vastly different then consult the loading
instructions again (reading them left to
right and working down the page this time)
and try again. If the program still refuses to
load or fails to come up with the control
panel as shown (fig. 2.1) then you've
probably got a corrupted disk, or a broken
computer. The traditional response to this
is to cry, swear, hit the machine/disk a few
times (but not too hard as it costs a lot of
money), and then contact the
manufacturer. The first parts of this are
not essential but have been shown to be stress relieving. If the screen shows carefully
arranged rows and columns of square-edged aliens who seem to be marching left and
right and slowly descending towards a blob with a dot on it at the bottom of the screen
then you are reading the wrong manual.

Flgure 2.1

This screen is the heart of the 3D Construction Kit 2.0 editing system and consists of
three separate and distinct parts. The top line of the screen is known as the menu bar.
Moving the mouse will move the arrow on the screen and if the right button is clicked
on one of the words on this bar a menu will appear. A menu, as its name suggests, is
n serles of options from which one makes a selection. Most computer users are
tamiliar with menus but their use will be explained later for the uninitiated.

The bottom third of the screen is taken up by the control panel. This panel is your
main interface with the editor. Moving the arrow onto one of the many buttons and
clicking will activate the button and produce the desired effect (or, at least, the correct
olfect). If the control panel looks complex at the moment, don't worry. Once you have
used it a few times it will seem easy and logical, as indeed it is.

Between the control panel and the menu bar is the view. This area is where it all
happens, it is a window onto the world, from the user's point of view, where we can
maove around and interact with the objects we will insert. At the moment it looks like
three coloured bars but it is in fact... the horizon. The blue bar at the top is the sky (do
| really need to explain this?), the green bit is the ground, and the grey bit is a floor.
The fioor differs from the sky and the ground because it is an object and can be
removed from the area. The sky and ground are always present, but their colours can
be changed or made identical (for interiors).

TUTORIAL 2

: ;2.

The control panel is also divided into three sections. The first section contains the
information window. Three lines of text can be seen in the window at a time. To see
the next line down you simply point the arrow at the lower of the two buttons on the left
of the window and push the left button (this manoeuvre is known as a point and click
maneouvre for obvious reasons). To move back up the page press the upper button.
Little arrows have been thoughtfully placed on the buttons, so there's no need to waste
memory cells.

Try these buttons, and you will see the text in the window change from an
indecipherable series of seemingly unconnected words and numbers to a different but
equally confusing set of the same things. Still, at least we know the buttons work. Take
the window back to the top of the page (the first three letters of the top line should read
POS) and we'll move on to the next bit of the control panel.

The next section of the control panel are the editing buttons. Each of these buttons
enable us to manipulate objects or the area in some way. We will be launching into
this in part three of the tutorial but for now we'll use one of them to put an object in the
area. For this we need the second button along. The first button is the Incentive Logo,
clicking on this will bring up the program credits which can be removed by clicking on
OK or by pressing the return key.

Click on the second button along, the one
shown in fig.2.2. The box shown in

fig. 2.3 will appear. Click on the top left
button in this selector (the one with a
drawing of a cube on it). The selector will
disappear and a cube will appear in view,
hovering magically above the ground, to
the right of the centre cross, and with its
base just below the horizon. Do not panic
if you do not understand what you just
did. All will be explained in Section Two.
For now, we have simply put the cube
there so that when we practice moving
we have something to move around.

Figure 2.2

The final section of the control panel is the
movement controller. The dazzling array of
buttons enable the “player” to move
around the area on each of the three axes
of movement (X, Y and Z), and also to turn
their head in all directions. We will now
look at all the buttens in this section of the
control panel in detail. Try each of them as
we describe them, and be sure you
understand their use before you move on
to the next.

Figure 2.3

The first button on the top row is a toggle button. This means that it turns an item off if
It In on, or on if it is off.. like the touch on/off controls on many modern televisions or
sloreo systems. This first button toggles the centre cross in the view area. The cross is
uselul for positioning, but can get in the way later when testing.

The button directly underneath it turns you round exactly 180 degrees (a half turn).
Whaen you press this button the cube will disappear from the view because it will now
be behind you. This button, by the nature of what it does, is also a toggle, so pressing
It once more will bring the cube back. When you turn to stand with the cube behind
you the second number on the second row of the information window will change from
0 to 180. The three numbers on this row represent your angle of rotation on the three
axis (X, Y, and Z).

Angles are measured in degrees. There are 360 degrees in a circle (or a full turn), and
tharelore it follows that a half turn is 180 degrees and a quarter turn is 90 degrees.
Dagrees are measured clockwise and are an indication of which direction you are
pointing in.

An has already been stated there are three axis in three dimensional space. Things
get conlusing because the X axis is used for horizontal measurement but to control
vartical direction. Things become simpler with the use of a simple analogy. Imagine
that you a ball with one eye skewered through the centre from left to right on a long
nkower (okay, so the analogy isn't that simple). We can move the ball left and right on
thin skawer (the X axis), or by turning the skewer we can make the eye look down or
up. Thus, the axis of rotation is the axis on which we turn our view, not the axis upon
which our view appears to move.

To save some confusing thinking here is a summary of movement and rotation on the
various axes:

X Axis: Move left and right. Look up and down.
¥ Axis: Move up and down. Look left and right.
/ Axis: Move forwards and backwards. Tilt head clockwise and anticlockwise.

lo turn slowly left or right (rotate on the Y axis) we use the second and fourth buttons
on the top row. Our Y rotation changes in the information window. We move in steps of
tiva degrees every time we click the left mouse button, and thirty degrees when we
pross the right mouse button. This is the same on all the rotation buttons, but the
numbars can be changed by the user. We will do this later.

Ihe buttons directly below the rotate left and right move the player to the left and right.
Ihe first and third numbers on the top row of the information screen will change when

9

this button is clicked. This row gives the co-ordinates of the location of your viewpoint
in the area. You are in walk mode, ie. you cannot fly so can only move on the ground.
Your mode of viewing is shown on the third line of the screen. We will be changing it
later in this section but for now it is best to get to grips with walking. Once you have
fallen to the ground your Y position will not change when you take side steps, but your
X position will change by 40 units every time you click with the left button and 200
units every time you click with the right button. These figures apply for movement on
all three axis.

Walk should already be highlighted. Next to it are Fly 1 and Fly 2. To select one of
these two modes of movement simply click on it. In Fly 1 your movement is identical to
that In walk mode with the added benefit that you can fly up and down as well. Select
It, click on OK, and try it out.

Now change your movement to mode Fly 2. The path to this route is General — Mode
Vahicle — Fly 2. To follow the path simply click on each of the named buttons in turn.
Wa will be using paths a lot, especially in the reference section, so it's a good idea to

. — : X get used to following them now.
The middle two buttons in this set of six move you forwards and backwards in the

direction you are facing. In walk mode this is restricted to rotations on the Y axis but

when flying things get a little more interesting. Try experimenting in Fly 2. See if you can work out what the difference between the

two Fly Modes is. If you give up, or think you've got it, return to this very page and

read on.
To the right of this main movement control are two buttons with underlined arrows.

These move you upwards and downwards (on the Y axis). If you are in contact with
the ground and cannot go through it they will cause you to duck and stand up (your
height, the last unexplained number in the information window, will change according
to its own limits).

In Fly 1, when you press to go forwards only your X and Z co-ordinates can be
changed - i.e movement in the area is always parallel to the ground as it is taken only
In terms of your rotation about the Y-axis. In Mode Fly 2 however your rotations about
all the axis are taken into account and you move in a straight line along your sightline.
This allows totally free flight but tends to end in tears and confusion. To add to the
frustration, using the emergency reset (bottom right icon button) also resets your
movement to its default (initial) state — Walk. There is a way to change this defaull,
but for now a bit of practice with menus wen't do any harm.

To the left of these two buttons are a blue divider and another set of three buttons. The
two smaller buttons will look up and down (rotate on the X axis} and the tall thin button
will return your gaze to looking straight ahead (X rotation = 0).

The final two buttons on the far right control the tilt of your head (rotation on the Z

! Once you've got the hang of moving in the area and flying round the cube, things start
axis). And that's the lot.

to get a bit boring... so don't just sit there wandering around an empty space: let's build
n world,

Try moving and looking in all directions and then getting back to your initial position
(co-ordinates 4000,310,4000). If things become confusing and you want to get back
the quick way click on the far right button on the bottom row. This will reset you to your
start position before falling, as though you had just switched the program on. It will not
alter any of the objects you have been working on, it simply resets you.

Once you've mastered walking, it's time to fly. Click on “General” on the Menu bar.
The General Menu will appear. The first ltem on this Menu is “Mode”. It is used to
control our modes of movement and our vision. Click on Mode and a second Menu will
appear to the immediate right of the first. We want the top option — vehicle — so click
on this. The two menus disappear and yet another one appears (it's a bitlike a
recurring nightmare isn't it). The line of buttons at the top of the menu control your
movement modes and viewpoint. You can make an absolute move, that is one which
takes you to a specific location specified by co-ordinates, by altering the figures at the
bottorn half of this menu but for now we are interested in only three buttons.

10 11

TUTORIAL 3

3: Of palaces and bungalows - A house of our own

Whilst moving around is great fun and has been a source of constant enjoyment to
countless generations of infants, it can be made even more thrilling when there are
things to move around — Space Invaders would not have been a big hit if there were
no invaders to shoot at.

Turn on your machine and load up 3D Construction Kit 2.0. You will be presented with
the menu bar, view, and control panel. The only object in the area is the floor. This is
where we will build our houses.

The bottom row of the control panel contains the icon buttons. Icons are pictures that
indicate the function of the button. The first thing we need to do is put the body of the
house down. For this, we will need a cube. The icon to create an object is the cube. It
is the first real button on the bottom row (although the incentive button works it has no
real value and is not even drawn as a button). When we click on this we are presented
with the menu shown in fig. 3.1.

This panel has twelve square buttons and
a cancel button. You'll have to work out
what Cancel does on your own (yes,
you've guessed it), but I'll run through
what the others do.

T TYPE

—
¢

. BELEC

The top row of six buttons create objects.
What this means is they bring the object
into the view and add the name of the
object to the bottom of the object list. We
can change the name of an object but we
cannot change its position on the object
list. It is an object’s position that gives it
its number and when we are telling the machine what an object does we always refer
to it by number. We will be using the object list a lot, so it is an important concept to
understand. When an object is deleted, the other objects below it on the list do not
change position. The space remaining is filled by the next object created.

Figure 3.1

The objects created by the top row are, from left to right, a cube (six sided solid), a
pyramid (solid with four sides and an openable top), a square (two sided four edged
plate with fixed 90 degree corners), a quad (two sided four edged plate with
changeable corner angles), a triangle (two sided three edged plate with changeable
corner angles), and a line (single sided with movable ends, always straight).

A solid is a three dimensional shape like a box and a plate is a two dimensional (flat)
shape like a piece of paper. Sides of a shape are its surfaces (the colourable bits) and
edges are the straight boundaries around the sides.

TUTORIAL 3

The first two buttons on the bottom row are slightly different — the first of them creates
A group (more on this later on in the section), and the second creates a sensor (forget
about It for now!). The last four buttons create objects as follows: a pentagon (two
sided five edged plate with changeable corner angles), a hexagon (two sided six
edged plate with changeable corner angles), a flexicube (like a cube but with
ohangeable corner angles — think of it as a cube made up of triangular building bricks),
and a sphere (always perfectly round but size is alterable).

If you select the wrong object you will
need to delete it. To do this press the
second icon button as shown in fig.3.2,
this is the Delete Object icon. You will be
presented with a list and hopefully
unsurprised to find out that it is the object
list. The first object on the list will be the
floor, and underneath it will be listed any
objects you have created. The currently
selected object will be written underneath
the list, and to the right of it will be a
Flgure 3.2 button marked Select. There are two
ways of selecting an object, either click
on Its name on the list, or click on select and then click on the object itself in the view
window. Once you have selected the right object for deletion, click on OK. You are
presented with a warning, click on Yes if you are sure you want to go ahead with the
deletion. The object will be removed from both the list and the view and you can
carry on,

Ity creating and deleting some objects — you won't be able to see the plates if there is
something else behind them of the same colour — create them on their own and they
are clearly visible. The objects are placed in the top right quarter of the view, so you
pan move around and then create objects to avoid them lying on top of each other.
Onee you've got this understood, return to your initial view (bottom right icon) and
delete everything except the floor. Then create a cube. It will be object number one on
the list, This is to be the body of the house.

Fig. 3.3 shows the icon button for the
command Edit Object. It is the sixth icon
button along. Click on this, select the
cube, and then take a deep breath. The
bottom half of the contral panel changes,
the information window shows the fourth,
fifth, and sixth lines, and you are now in
edit object mode.

UL

Figure 3.3

12

13

The tI'_lrc:Je lines of text tell you the number and name of the object, the co-ordinates of
the origin of the object, and the dimensions of the object (length, height, and depth, or
to put it another way, X, Y, and Z).

The bottom panel section is divided into six parts. They are divided by blue title lines
that give a pretty big hint as to the functions of the buttons in each part. The first part,
“point”, is shaded out, this tool is not available on the cube and we will use it when we
put the roof on the house.

The second part is labelled Turn and its function, not too shockingly, is turning the
object through 90 degrees on any of the three axis. The object is turned about its
centre so its position remains unchanged. Its far easier to work out what the individual
functions do by messing about with them on some object so we will explain what each
part does in theory and you can get the specifics by trying them out. Basically, each of
the buttons controls the function of each part of the panel on each of the axes (there,
that made things clearer didn't itl).

Shrink allows you to move the faces (or edges on a plate) of the object towérds each
other. The centre point will change and thus both object position and size are affected.
The next part of the panel, Stretch, does exactly the same thing in reverse.

Move will move the object or group around the area — it will not allow objects to

occupy the same space so other objects that are in the way of the movement have to
be steered around.

Whilst in Edit Object mode, the currently selected object can be changed by pointing
the arrow on the new object (in the view) and clicking — easy isn't it?

Bring the cube down to the floor and then re-size it so that it ends up near position
4000,30,6250 and close to size 700,400,450. This task will be easier if you set the
size first.

Now let's tidy the whole thing up. Return
to the main control panel by clicking on
OKAY, then click on the fourth icon button
(as shown in fig. 3.4) and select the cube.
This icon allows us to fine tune the
object’s attributes. These are its
characteristics and abilities and we

will be looking at them in depth in the

next section.

Figure 3.4

TUTORIAL 3
—
For now, we are interested in the Position and Size variables. Click on the number and
A Buor (lashing black square) appears at the start of it. Now type in the number that
wish to set this variable to and press enter. By working down the list you can
position the cube at exactly 4000,30,6250 and size it to exactly 700,400,450. Do this
aid then click on OK to remove the menu and return to the main screen.

Now we'll colour the cube. Click on Icon
number five, it's three coloured circles as
shown in fig. 3.5. Select the cube and
then click on OK.

Again the bottom of the screen changes
to give us a new control panel. This is the
colouring section of the editor. You are
presented with a palette of 256 small
coloured blocks, a window on the left
divided into. six coloured blocks, a couple
of buttons, and another window on the
right with a single coloured block in it and
a number underneath.

Flgure 3.5

An with the object editor you can select a different object by clicking on it in the view.
The background can also be selected this time and it's colours changed.

Hanloally when we are using the colour editor we pick up a colour with the left mouse
button and paint with the right. Colours can be picked up from objects in view, or from
any of the boxes on the palette, or in the grid on the left. The window on the right
shows the current colour and colour number — the paint currently on the brush.

The lirst colour (000) in the palette has a special use. It is invisible paint — it tells the
computer not to bother drawing this face of the object.

The window on the left shows the current colours of the sides of the selected object.
You oan change the colour of the object by painting these squares, and these squares
will ehnnge when you paint the object. For the background, the top colour is the sky
and the bottorn one the ground. Try painting the cube so that the faces are coloured
mlo fight, top to bottom, in the left window) numbers 14, 14, 15, 15, 0, 0. The botiom

I8 In contact with the floor so there’s no need to see it, and we're going to put a
toul on the top so there's no need to draw that either.

MNow I's time for some practice at what we've learnt. We're going to build a house. The
tonl will be o pyramid, the door will be a rectangle, and the windows will be a hexagon,

15

TUTORIAL 3

TUTORIAL 3

two pentagons, a triangle, and four more rectangles. Create the objects in this order
and then stick them on the house and colour them. The paositions, sizes, and colours
| used are as follows:

Object Position Size Colours
03 3975,430,6220 750,275,510 13,13,12,12,15,0
04 4440,30,6250 165,305,0 0,10

05 4530,240,6700 90,105,0 0,4

06 4700,220,6560 0,90,90 0,4

07 4700,290,6455 0,90,90 0,4

08 4000,330,6280 0,75,210 0,8

09 4060,200,6700 190,180,0 0,8

10 4260,200,6700 100,175,0 0,8

11 4095,185,6250 200,150,0 0,8

12 4000,195,6290 0,130,195 0.8

To close the top of the pyramid, the corner points must be manipulated. This is done in
the point section of the object editor. The point will be surrounded by a flashing wire-
frame cube and can be changed by clicking on “next” and moved with the arrowed
buttons as with all other functions on the editor.

Once the house is finished, colour the sky black, the ground deep green, and the floor
brown.

So far in this section of the tutorial we have been creating and manipulating Objects.
Once you have read, tried, and understood this section you will be ready to create and
use some groups.

Select the Create Object Icon Button (first one along — picture of a cube on it) and then
click on the first item in the bottom row of potential abjects. This will create a “group”. A
group has no physical form, it is a “folder” in which we can stick all the objects to
duplicate and manipulate them. We will move and duplicate our house so rather than
do this to each object individually, we will put them all in a group and save time.

The group is created when you click on its icon (the stack of cubes in the Create
Object Menu). If you now select delete object (second button — cube with a cross
through it) and have a look at the object list (the other way to look at the object list is to

vlick on the gloved hand icon, the eighth one along) you will see that the group is on
this list, Now we must add all these objects into the group. We do this by editing the
allributes of the group. Click on the fourth icon. It's a tick and a cross. We'll be
“xamining this button in depth next section. On the object list select the group — this is
vary Important so don't mess up here.

When you click on OK a new panel appears. This is the Edit Group panel. It gives the
nume of the group, its number, its position and size, two buttons (remove and add)
unel mn empty list window.

10 ndd an object to the group click on add. Do this now. You are presented with the
ubject list, Select the cube that forms the body of the house. Click on OK. The cube is
uddded to the group. Add all the objects in the object list to the group except the floor.
The list window in the edit group panel fills up. Once you have them all in the group,
pliek on OK fo get back to the contral panel.

O house can now be moved around. Click on the sixth icon along (the box with the
il wxtonslon). Select the group from the object list. You can now move and turn the
yioup. Position the house where you want it and then let's make another.

Halurn 1o the control panel. Click on the seventh button along. It's the duplicate
pljsot lcon, and, as you might expect, it duplicates objects, and, more usefully,
groups,

Huluot (e group from the object list. You are asked to select a duplicate position. You
Ll anter the exact co-ordinates you would like, or you can simply place it on any
uvallable side of the existing group. Select right (by clicking on it} and then click on
0K,

“Wallnl", ae the French rarely say, another house appears to the right of the original
uie (I things were this easy we could solve the homeless problem overnight, but sadly
1hings get more complex in the real world, sigh, never mind).

£ e object list you will notice that both the group and the objects have been
duplicated. Play around with what we have learned this section of the tutorial and
whatn you hive objects and groups down pat, give yourself a cup of coffee and meet
e al the start of section 4.

16

17

TUTORIAL 4

4: Scock, you've...GOT...to get us out of here.
Or: Beam me up Spotty.
(Surely there's some mistake here. Ed.)

Contrary to all previous knowledge, | can exclusively reveal at this point that
teleportation is here, now. It exists, we can use it, and it is found in the simulated
worlds generated by 3D Construction Kit 2.0.

Unfortunately, we do not yet possess the knowledge to get a real human being into the
waorld created by this program, but with just a few mare years research, and some
powerful hallucinogens, a solution could soon be at hand.

Turn on the machine and load up 3D Construction Kit 2.0 so that you are presented
with the familiar (and, by now, somewhat predictable) opening horizon in area one.
Create a cube, and lower it so that it rests on the floor, enlarge it to about 250 by 400
by 250. Walk into it. Now rub your bruised nose and pick yourself up from the floor.
Normally, the program will not allow us to walk through objects (this can be changed —
more |ater).

Any object, however, can be a Teleporter, and this (and other object attributes) is the
subject of this section.

Teleporters transport the player to Entrances. Any area can have one or more
entrances, and they are created in the Area menu. Let's do this now. Move a long way
back from the cube and view it from an angle so that you are looking at a corner, try
Location (1967,310,2398) Rotation (0,45,0). Now click on Area and click on Create
Entrance. Right, you've done it. Your current location is defined as entrance one. Let's
check this works now by moving away from this location. Go right a bit and then follow
Area — Edit Entrance. This box allows us to look at the entrances created in this area.
The top line gives the number and name of the entrance. The next two rows give the
position and rotation of the entrance (this will be the same as your position when the
entrance was created. All of these fields can be edited in the usual way.

The next row has three buttons. View will show you the view from the entrance, Goto
will move your current position to that of the entrance, and Set Current will set the
entrance location as your current position (rather like re-creating it). The Prev(ious)
and Next buttons are dimmed because we have only created one entrance, but if we
had more than one they would allow us to move between them. Any changes that we
make will not be permanent until we press Store. Clicking on Okay will return us to the
main editor.

Now that we've got an entrance, lets teleport to it.

Ihere are two ways of making an object into a teleporter. We're going to look at both
ol tham in this section but we'll do the easy one first. Click on Icon Four (the tick and
{ha oross) and select the cubs. The object attributes appear. We've already looked at
this sereen when we were setting the precise location of our objects but now we're
going lo look at the set of ten buttons on the right of the screen.

1hase are the objects main attributes that tell 3D Construction Kit 2.0 how an object
I8 going to behave. Objects can do lots of different things, they can be visible or
Invinibla, they can be drawn in different ways, they can teleport and sense, they can
uvan move around. The more things an object can do, the more memory it takes to
slore It The last few lines of the text window on the control panel detail memory and
Yl can see it go down as you work!! These attributes that we will be setting here tell
the computer that the object is able to do these things. It does not make them do it, or
yive details of what will happen, it simply makes them able to start moving, or sense
things, or whatever,

Lul's look down these buttons:

INV ~ This makes the object invisible. Whén an object is invisible the player can
walk through it and it will not appear in the view window. The object is not
active, (ie it can not still sense and teleport).

DEs ~ This makes the object destroyed. This is the same as invisible but the
object is now neither visible nor functional. Both of the these attributes can
be set during play (for example, you can tell an object that if it is shot then it
is destroyed and upon shooting by the player it will change to destroyed....
you can also make invisible objects visible, thus causing them to appear in
the view window).

WIR ~ Tells the computer to simply draw a wire frame of the object, and not to
colour the faces in. This speeds things up and can be used to dramatic
effect. The player cannot move through a wire frame object, even though it
may appear to be full of space.

TAN ~ Controls an object's tangibility. When this icon is switched on the player
can walk through an object although it will appear to be no different from
any other (great for secret doors and hidden locations).

TUTORIAL 4

MOV — Enables an object to move. Any attempt to animate an object whose MOV
flag has not been set will only end in tears and irritation. Remember, this
does not tell an object how to move, or when to move, it simply tells the

computer that it can move.

SNS — Makes an object a sensor. The sensor bution at the bottom of the screen

becomes usable. More on sensors in the next section.

CLR — Sets an object as colourable. This means that it's colour is changeable
during play. If this is not set, then the object will not be allowed to

change colour.

ALW — When in normal play, the game will not execute object conditions
(special instructions relating specifically to a given object) unless that
object is collided with, shot, or activated. When the ALWays attribute is set
then these conditions will always be checked (great for objects set to self

destruct after a certain amount of time, or always moving).

LOC — Locks the object off from being animated.

TRN — Makes the object a transporter (at last!).

Click on TRN. It toggles on, and the Transporter button at the bottom of the screen
becomes solid. Click on this now. We are in area one, and the entrance we have
created is entrance one. Type these numbers in at the relevant point then click on
okay to get back to the attribute screen, and okay again to get back to the contral

panel. Now walk into the cube. As you impact with it you are teleported to the entrance

we created earlier. Now that's flashy.

Teleporters are not simply useful for travelling around the area however, as you have
deduced, they can be used to go from area to area. To have a go at this we must
create a new area. Follow Area — Creale Area. A new area is created and we are
dropped in it. Let's change the colours in this area. The Area Colours that is. Click on
Area again and then select Area Colours. The default colours are shown from the
paleite (16 colours on an Amiga, many hundreds on a PC). Select a colour by clicking
on it. The colour bars move and can be moved to change the colour. Press copy and
then select a new colour: the currently selected colour is copied (wow!). Press reset
and the colours are set back to their states before you started messing around. Select
two colours a little way apart. Click on the first. Click on spread. When you click on the
second, the colours between them will be set as stages between the first and the
second (this is a lot clearer when you do it — so do it). Cancel returns you to the
control panel and resets before leaving. Okay sets these colours and returns to the
control panel. Try messing about with these and then return to the control panel and
lets get on with things.

Create a pyramid, enlarge it to about 250
by 450 by 250, and bring it down to
ground level. Set an entrance on this area
at location (5832, 280,2830) rotation
(0,320,0). Now we want to make the
pyramid into a teleporter. We will do this
by editing the object conditions. Click on
the third icon on the control panel pictured
in fig. 4.1 — it's the one with the large
question mark on it. Select the pyramid. A
very ominous large grey screen appears.
There is a cursor in the top left hand
corner of the main page — this is the page
where we program each object, tell it
whal to do. Objects understand only one language, and that language is called F.C.L.
(Fisescape Command Language). The system which the computer uses to draw all
ol lhe views is Freescape, the areas are known as Freescape areas, the objects as

I inencape objects, and so on until we run out of examples or lifespan.

Figure 4.1

Fonunately FCL is a very logical language to use, and it is very easy to learn. It would
L loalish to explain and demonstrate every FCL command in all of its permutations in
108 ttorial, but we will use most of them, and by the time you have finished you will
Huve b clear idea of the logic of FCL and will be able to extract maximum
undeistanding from the FCL Reference Guide, which is later in this book.

We want our teleporter to teleport us to area one when we collide with it so this is what
Wi must tell the object.

1ypo the following into the machine:
il bollided? then goto (1,1).

Ballsva it or not (| said FCL was easy didn't 1?7) this means “If this object is collided
Wil then go to entrance one in area one.” Got it — if not then check out an english
lngunge difficulty. The numbers are put in brackets, separated by commas, and
Kiown s parameters. Parameters can be optional. For example, if the command had
il

Il bolliled? then goto (1)

then the program would take us to entrance one in the current area.

20

21

TUTORIAL 4

Once you have typed this in click on OK. The program will compile the command
(check you have typed it in correctly and tag it on to the object). If there are any errors’
you will be told about them now.

Naturally there are no errors in our lines of code (flashy jargon term for the words we
type in — well worth learning for the truly “in the know”) so we are returned to the
control panel — now we can test it out: walk into the pyramid.

We are briskly beamed across the freescape cosmos to entrance one at area one.
Now, by editing the commands to the cube in either way, set the cube to zap us back
to entrance one in area two. The way to do it is printed below (for the truly slow
learner):

Follow Conditions — Object Conditions > — Edjt and enter the code:

if collided? then goto (1,2)

and click on OK.

By pressing forwards we can now walk endlessly from world to world being teleported
more times than Captain Jerk. Right, that's the end of lesson 4 : you can take a
teabreak/cigarette break/sleep break now and then meet me on the next page for
section 5.

5: Holy Exploding Cubes Batman!!

1y now, you will have noticed that when you have the arrow on the view window and
you olick the left buttons four flashing lines appear from the corners and converge at
i wrrow, To the more violent among us this will be immediately recognisable as
shooting, New Age pacifists can take this to be sending out rays of love to pacify and
10 mould the negativity of the location, but the program calls it shooting, se it's
probably best to use that.

1haie are three things that the player can to to an object (stop smirking — that isn’t one
ul them). The player can shoot it, the player can activate it, or the player can collide
wilh Il To test for each of these we use the FCL command “If" in conjunction with the
words "shot?", “collided?” and “activated?” fo test for shooting, collision, and activation
feupuctively.

AL s point you begin to realise that FCL is not a very complex language, in fact, it's
Lasloally English (or American, depending on whether you say “sidewalk” or
Puvament”), with a lot of the words missing (especially the little ones that are no good
I tharades because everyone gets them too quickly).

Ll 1D Construction Kit 2.0 running and create five rectangles in area one. Leave
Wi al their original size and arrange them so they form a cube on the ground (the
bollom Iace is the one you should leave out. Colour them if you want to... a black
background looks great for this one.

How Inl's start programming the objects to move. First we have to get into the
alliibutes ~ icon four — and set all the rectangles to movable by clicking on MOV in the
allributes columns.

Hest we have to decide when we want them to move (when activated, when collided
wilh, or when shot). We'll make our one move when shot. The effect we are trying to
{1 that of the box opening up by exploding from within so we must tell the computer
10 tove all the sides of the cube in different directions. The instructions that tell the
Lumputer how each item is going to move is called an animator and we will need five
ol them (one for each face of the “cube”). There are quicker and easier ways to do this
1k than the one we are going to use. We could for example make all of the objects
0 group and deal with that group, but we will take the simplest route, as this is a
A0 Construction Kit 2.0 tutorial, not a book on advanced FCL technique. Also, going
the long way affords us an insight into what is happening and why.

L (unle live animators. Follow Conditions — Animators > — Create to create each one.
Now lollow Conditions — Animators > — Edit to begin editing the conditions (a brief

22

23

TUTORIAL 5

TUTORIAL 5

reminder — conditions are the groups of instructions that tell the computer what to do..
this is all explained in the reference manual later on anyway... if you want to get in tha
deep, why don’t you read that instead... of course, it won't have this tome's witty, self-
mocking style, but that could just as easily be seen as an advantage. Anyway, back
reality:) the screen asks you to select a condition — select number one.

An animator comes in two parts, the bit that tells the program what objects to move,
and the bit that actually moves them. Type in the following code:

Include (3)
Start

Loop (30)
Move (0,0,10)
Again

End

The first line tells the computer to include object number three in this animator. There
could easily be a list of abjects here if this animator is to be used to maye more than
one thing, they would be included as separate includes... don't worry, I'll clarify that...
typical start might be:

Include (10)
Include (4)
Include (2}
Include (26)
etc...

You cannot express this as “Include (10,4,2,26)". | know it's a shame, but those are
the breaks folks.

The second line of our code is “Start”. This tells the machine that the list of objects is
over, and the movement commands are about to begin.

The next bit, “Loop (30)" means “we're going to do this next bit 30 times”. The
computer will come back to the command “Loop (30)" when it is told to start again and
will continue to do so until it has done it 30 times. The number in the bracket can be
changed.

—

Move (0,0,10) tells the computer to perform a relative move in each of the axes of the
amount specified by the three numbers — so this line moves the included object
{umber three) ten units in the positive on the Z-axis. It adds ten units to the object's Z
Lo-ardinate.

Wiy the Z co-ordinate? On my cube object three is the face at the back of the cube -
W move it away from the cube | have to move it on the Z axis. On your cube, the faces
iy all be in different positions. Now the fun starts — You have five animators and five
uhiects, See if you can write the code for all the animators. Each animator will be
sesnnlinlly the same. All you will need to change is the movement co-ordinates (minus
Humbars, such as -10, will move the object towards the zero point), and the number in
ihe Include brackets.

1his lype of movement is known as relative movement. The object is moved an
st relative to its current position. The other form of movement available through
0L I absolute movement. In absolute movement the numbers in brackets give the
i ardinates to which the object will be moved. The commands for making absolute
Waven e detailed in the reference manual, which, as you may be realising, will have
10 b digested in full with gravy and two vegetables before you get the maximum out of
s tather horrifyingly complex program that you thought “might be a bit of fun®. Still,
rml‘vu ol this far, and that's a very good sign that you'll go the distance. It all gets
sl from this point onwards.

Hight, while I've been talking rubbish, you should have got those animators written. If
Al than put this down and give it a try. There are very few mistakes to be made, so
WL et on with the working out and typing in (you can find out which object is which by
tading the text window and clicking on them as you move around the box).

vl you done it? Really?? You're not just reading on because you think you're smart
S0 you know what's going on?? You're not on a train are you?? Reading this in a
shop?? You must have been here hoursl!

Sy, 1l take your word for it that the jobs been done so we'll test them out. We need
1 wilte object conditions now so click on the question mark icon and select whichever
ubijuol Is Included in animator one. You must have written it down somewhere by now.

25

TUTORIAL 5

Here's the code. I'll explain it after you've read it, but see if you can work it out for
yourself:

If shot? then
Startanim (1)
Startanim (2)
Startanim (3)
Startanim (4)
Startanim (5)
Endit

is piece of code asks the computer if the object has been shot, and if it has then all
tThrgscgt?e up to the “Endif” commgnd is executed. We start all of the animators in this
piece of code. If we didn't only the side of the box that we had shot would move. This
code is exactly the same for each of the five sides of the box, so type it in to the obj
conditions of each of them and then meet me back at the control panel.

" i ; i o d
Get a nice corner view of the box and shoot it. The box should "explode” open anc
then stop with the top hanging in the air. We could make the ,tlnp land by lengthening
its animator, or we could simply make the objects “destroyed (using the cpmmand
Destroy — no great shocks here either) so that they vanish. Play around with the
instructions to your heart's content.

You will notice that once the cube has been shot open it dc-_esn't do much. To put it
back to its initial state click on the reset (exclamation mark in a red triangle) icon. Try
setting the cube to open on activation instead of being shot (you activate an object
with the right mouse button). Try and bring the top face of the cube back down again
(this is not as easy as you might think and is a damn good FCL programming
exercise).

i i he next section of
For the moment have a bit of fun with FCL, and then move on tot)
the tutorial. We're two thirds of the way there now and things get more and more visu
from here on in. FCL is covered in more detail a little later in the manual.

i

| TUTORALG

&: Faders and Sensors and Making your own Videos

1110’8 & bit of the object attribute screen we haven't looked at yet. It's the button next
0 1he word Fade. Fade can be set in four different ways and pressing the button
Hives us through the list of fade effects. Off means the object does not fade. In
Hisans the object fades in when it is first made visible. Out means the object fades out
anil becomes invisible. Bounce means the object fades in and out constantly.

I8 number next to the word “Fadeval” tells the computer how transparent an object
I8 Il an object is fully transparent (Fadeval = 9) then it will not be drawn — but you will
SllEBe able to collide with it. Fadeval is useful for windows, screens, etc., and the
Minak (which bits are drawn and which bits are not) is definable. Fadevals number 0 to
4 Wi the stages through which an object is faded in or out and are fixed in to the
Syslem. Fadevals 10-15, are user definable. To understand the way Fadeval works set
Pl 1o OFF and try setting Fadeval to different numbers between 0 and 9 and
Hlsniving the results in the view window. You can define your own masks (the system
LUl tham user fades) by following the path General — Edit User Fades which allows
YUl cnss to the fade editor. Select the mask you want to edit by clicking on its
Huber and then click on any of the blocks in the eight rows and columns to toggle
1 on or off. You can use your Fadeval in an abject, by setting the object’s Fadeval
W he number of the user fade that you have defined. Any black spots on your mask
Willhs nvisible points on your object, any grey spots will be drawn.

LW you've played around with fades and the fade editor you will notice the way that
WHAI AN object fades out it sets itself invisible — this is especially useful when the fade
I8 tallad by the FCL command “Fadeout” which might be used in the following way:

Fll e cube's object conditions (the question mark icon). Enter the following code:

I iitivaled? then fadeout (2,1)

1 (21) means object two in area one. Leaving out the second number means in the
DU aroa.

11y ulivating the object and it will fade out beautifully (or badly, depending on which
fnile you usal),

HIhL that's lading — now lets see what other objects can do to you — we need
SO In our land, and this is how we do it...

TUTORIAL 6

Any object can be a sensor, or you can create one by clicking on the little radar dish
icon in the “create objects” menu.

Let's put a sensor next to the cube, using a pyramid. Create a pyramid and drop it to
the ground next to the cube. If the cube has faded out bring it back with the reset
button (bottom right, and this is the last time I'm telling you).

i i i i i NS.
Now edit the attributes of the cube (icon four, the tick and the cross). Click on S
This makes the object a sensor. The sensor button at the bottom becomes usable, so

let's get going....

icking this button we are presented with a screen which shows us in which
3?9?1'5:%15%9 sensor is active ?these can be toggled on and off, they all start on), the .
offset from the centre of the object where the sensor is placed that marks the centre of
its sphere of sense (and if you understand that you're a better person than | am), the
range of the sensor (in units), it's speed (how many 50th's of a second it waits before
reacting), the sound that is to be played when the sensor is triggered, the procedure g
be executed (if any), and the type of sensor that this is.

Il pi ter because
There are two types of sensor, a detector, and a shooter. We'll pick a shoo '
it gives a visual indication when it is triggered (detectors are used when you don't wa
the player to know they've been sensed). Make sure this button is set to Shoot.

i i dure without
Back in the paragraph before last | managed to sneak in the wor-::.i proce v -
anyone knofr‘.'ing, but now that | have admitted my cunning plan I'd better explain what
a procedure is.

A procedure is a section of FCL code, like an animator, or a condition, that can be
called by any other part of the code. In the same way that \!Ue"created the animators |
but they were not run until the machine reached a "StartAnim comm_and, procedures
can be complex series of instructions that are called from anywhere in tlhe program b
the command proc which is always followed by the p_rucedure number in brackets.
Thus, a sensor being triggered can call a procedure (if the number is settoOno
procedure is called) which closes doors, o, in this case, fades objects out. We will séf
our sensor to fade out the cube when it is triggered.

Set PROC to 1, and set the sensor to be of type “detect” gpd range 500 and then
follow Conditions ~ Procedures — Create, and then Conditions — Procedures — Edit an

select procedure number one.

This procedure will be one line long - it reads; Fadeout (2,1)

28

Typw It in, then get back to the control panel and trigger the sensor. The sensor
duilnots, the cube fades — postry in motion — this is the stuff that is made of.

Naw than, there may be points in your game when you want to move the player
siound the area (when the player is standing next to something dangerous or when
e plisyer arrives in a new area for the first time, for example). When you want the

10 move without the player controlling the movement, you simply stop the game
aiil show the player a video. The best thing is, you don't need a video recorder... 3D
Cunsliuation Kit 2.0 comes with one built in... here’s how you use it...

Lok on General on the menu bar and then click on video. The menu that unfolds
Sl U the four options available in the video section. Before we can record a

ubnon of video, we need to create it. Do this by clicking on Create Sequence. Now
the same thing again but select Record Sequence. This is where we do the
Halatity of the work. Select Viewpath number one (it's the only one on the list, the one
yOu Giealed) and the control panel changes to reveal a video recording panel.

e numbars on the left give us the information we need. The first number is the
Humber ol moves made by you during the video. The second number is the length of
i Ve In minutes, seconds, and hundreths of a second. Below this are the name
Al number of the current video.

Ly, belore we go any further, it's time to come clean. Although we call what you are
Aol o eeord a video, it isn't in the strictest sense. The computer is about to record

I aulions — not the scenery that passes before your eyes. In other words, if you
Sl the video to look the same every time, you will have to be sure that the video
SIS playing from the same player position and rotation every time (fortunately there
Hve Lsan controls provided for just such an eventuality).

I8 humbaers on the right hand side of the vertical blue line are the current timer
ion ol the recording (time elapsed since recording/playback began), and below
e current move being performed (its number in the sequence of events).

Wi you first arrive at this control panel all of the numbers will be set to zero with the
mpl o ol the video number which will be set to 001. To the right of all the

mation are the control buttons. The first button (blue square) is the stop button,
Hesl 0 UL s the record button — this is one of those neat videos with single touch

ol lnoilities — and third along is the return to start button. The fourth button is the

Bulton, and the fifth button erases everything from the current play position
Wi,

Lk G teeord and then when the tape is rolling (numbers changing in top right
Bumiber display) move around the area a bit, turn round a few times, and then click on

e

29

TUTORIAL 6

stop. Click on rewind, then press play. Your last few moves will be repeated: each
move will take as long as it took you to enter it initially — th_e sequence of events will
take precisely the same time as when you first performed it. This type of playback is
called realtime playback. The other type of playback supported by 3D Construction K
2.0 is normal playback. When in normal playback, the video still executes every mov
you made, in the right order, but it does not wait at the gnd of any move. L}smg norm
playback you can create some truly spectacular sensations, for e;ample. it could !ae
used to knock the player around when they are shot —a _5|mple wiggle around which
returns to the same position as it starts would achieve this.

To choose playback mode when you have finished recording, click on Exit and then
follow General — Video > — Edit Sequence and select the current viewpath.

In this control panel you can set the name of the video sequence (or viewpath), its
playback mode (toggles between realtime and ngrmal} and also set it to repeat or pla
once (| assume that this needs no explanation — if you feel I am wrong plgase feel fr
to call the Government Department for the Profoundly Stupid. If you can find the
‘phone, that is). .

The repeat count tells the program how many times to repeat the sequence. Zero
causes it to repeat infinitely. It is in this panel that you can also set the start position
the video. This position can be specified in terms of an entrance, or in the specific X,
and Z co-ordinates and rotations. To tell the program which one of these start
positions to use you click on the bottom button (start mode). This will toggle you
between current pos (performs the moves in the video from whatever position the
player is in when it is started — useful for effects of thertypa described above),
entrance (as shown on screen), and position (as defined on the panel).

To check that you are happy with your creation, follow General — Video > — Recqrd
Sequence and you can view the video by clicking on play (the triangle). These videos
can be used as part of conditions by using FCL. For further details of the FCL
commands consult the reference guide (which does, for those who were worried,
contain full details of FCL, its ferm, and its uses).

Well, only one more section to go and you'll be using 3D Construction Kit 2.0 like a
pro. You've already been shown everything you need to create a worlfi —in the next
few pages Il take a walk with you through the General menu, and we'll learn how to

turn the world into a game.

30

7 : A Player of Games, and a few loose ends

PO hone who are, perhaps, slower on the uptake than most, it needs to be pointed
WL IAE games created with 3D Construction Kit 2.0 are going to be of the “moving
WU Ineide a three dimensional space” type. Although Space Invaders (gosh, it's
BALK again... how did it ever get to be such a yardstick?) would be most interesting
W01 would certainly not have been such an immediate hit if it had been written
his way

Hyais of games written with 3D Construction Kit 2.0 will need access to certain
WG controls, the view, instruments which relay information (like a clock, or an
WIS matar), and snippets of information in text form (like “You have crashed, idiot.”
S Anather try wimp?” — you know the sort of macho posturing stuff | mean).

A0 Ehnatiuction Kit 2.0 gives you access to all of these things both through FCL and
HIIOH & set of commands in the editor which will be the subject of this section.

A8 Ennstuction Kit 2.0 is not an art package. To design your playing screens and title
SUEIA you will need to use an art package. Fortunately 3D Construction Kit 2.0
SUBBBIE nearly every popular art package and will load screens of different types
Sl on ditferent packages. The playing screen is the border around the view
Sl on which we place the control buttons and the instruments. The program
B hese playing screens as borders and we have included several demo borders
W e program. The one we are going to use is called “Driller.IFF”, Follow File —
Sis - Locate and then tell the machine the name of the disk folder in which the
BRI for the game are to be saved (the folder we are using for this tutorial is on the
SREand dink and is called “BORDERS” (not an altogether original title but a functional
S netheless). Then use File — Borders — Add to add the “Driller.IFF" demo border
I8 progam. Make sure that you set the Freescape Window button to “Off” if it is not
MR ol that way otherwise the program will not load any border art that covers the
SRR Ao where the view window is currently set. Set the colours to come from the
mqlm (1his means the freescape view will be coloured with the colours in the border.
WLy, when you put a game together yourself you will bear this in mind when
mnln Ihe freescape world, but this is just a tutorial dammit! What do you want?

1% Had blood??) The border will be loaded into the borders list as Border 001.
LIS Hve i look at it. Follow File — Borders — View (selecting Border 001)- The disk
WS Whires (or purrs if you are rich enough to own a hard drive) and the screen

Wi Although | don't want you to do this yet, you can click either of the mouse
BUIGNA 16 get back to the control panel.

LS8 1ke 1 look at this border. Firstly we have to remember that this is purely a piece
ALk, none of the buttons work, none of the dials work, they are all purely
WHNIEal representations for the player. If we want instruments and buttons that work,
S I we want to put the 3D Construction Kit 2.0 view into the window drawn on

31

TUTORIAL 7

A R

e

this page (centre top) we need to do that ourselves — That's what I'm about to show
you... so let's get started.

Return to the control panel (have you noticed how many times the words “Control
Panel” crop up in this tutorial?). Let's set the view window.

Follow General — Set View Window. You are presented with a panel that tells you the
position (X and Y co-ordinates on the screen) of the bottom left hand corner of the

view window (zero point is bottom left) and the size of the window. Y_ou can change
the size of the window by entering in numbers and then clicking on view to see the
window. However, we want to set it to the border we have loaded, so click on set to
the window in a more visual way.

You will see a large box (the view window) with a small box in i_t's bottom right hland
corner. You will also see a panel that details the position and size of the view window.
Move the box by holding the left mouse button down whilst inside the box and moving
the mouse. Change the size of the box by holding the left button down and moving th
mouse whilst in the tiny box (this moves the corner of the window). Try this and once
you've got the hang of it meet me at the top of the next paragraph.

We need to set our window to fit our border, and this would be easier if we could see
the border. Click on the small panel. The borders menu appears and you can select
our border. Once you've selected it click on OK. Set the view window within the large
front screen on the border then click on the right button to return to the view window

panel and on OK to return to the control panel.

Now, finally, after much tension and rumour, the meaning of _the last of the icon _
buttons. A simple process of elimination will tell you that the icon button in question is
the one with the eye on it. This button puts the whole system into test mode (and, in
case you've been panicking, pressing the F1 button will return you to the editor). Wh
you click on the eye button the screen will clear and the view window you have just se
will appear. Do this now.

You are now in at the playing end of the system. The left button fires (just like pormal
and the right button activates. It's not really very exciting is it — in fact it looks like the
border has been forgotten, and there seems to be no way to move around the world.
Let's deal with these problems one at a time.

Follow General — Defaults and you will be presented with a new panel. This panel is
fully explained in the Menus section of the reference gulqe but we must learn now
what a default is and how they are used in 3D Construction Kit 2.0.

32

| ——
Dataults are the way that (1): the game will start, and (2): the game will reset itself. To
morm u raset whilst in playing mode simply press escape. If a border is defined on
rnnal It will be loaded. When you first go into test mode the game does not reset
Wil - you are put into the world at your current paosition in the editor, and no borders
Wi londaed (there is a good reason for this — borders take time to load, especially if
Youe oo poor for a hard drive, and when testing a simple part of the game we do not
Wil 1o have to wait around).

Wa want our game to start with the border we have loaded (number one on the
Lo list), so enter this at the bottom of the panel and then click on OK.

NUw uo into test mode and reset the game (by pressing escape, the “esc” button on
1 lop lett of the keyboard). The view window can now be seen in the border, but we
Sl have no controls or instruments working. We'll do a couple of each so that you get
W8 e and then, for your final piece of homework (ugh! bad word!l) try and get the
sunliol panel fully functional.

Wa'll se! some controls first. Press F1 to get back to the control panel and then follow
el -~ Controls. Yet another dazzling panel appears before our somewhat tired
mu (vary tired if you've done this whole tutorial in one long masochistic session).

1y ul the controls in the game are already defined. Each control has a number, a
puilion for an on screen button, a definition of which mouse button applies on this

i button, a keyboard control for the command, and the function of the control.

w hrough the controls with next and when you've had a look at what is already
Suailabie you'll see that the programmers have already included nearly everything the
Siige game could want. However, if your game contains a special new command to
ke he loast, you would simply add a new control, and tell the editor which
:mdum (a short set of commands — maybe to run an animator, or blow up a cube,

aiyihing really) to run when this control is activated.

Sulling & button or two will make things clearer. We'll set the rotate left and right
Bulone, and the move forwards.

Salnot cantrol number one, “Move Forwards”. Click on set. The tiny box in the top left
I comer s the control. Click on the co-ordinate panel and load up the border, then
he button over the forwards arrow on the icon panel at the bottom of the border,
done, olick on the right mouse button. Find controls number seven and eight and
sul e on the correct sides of control one. This done, click on OK and then kick the
i Into test mode (the eye icon — last reminder). Do a reset (“esc” key) and try
whole thing out. Not very exciting without things to move around, so load up object
Humber 0001 from the clip art folder supplied with 3D Construction Kit 2.0. Set it to
Wil i the position as saved, and then pop into test mode and move around it. Pretty
L alY Wall, maybe not, but it's certainly pretty locomotive, using the word as a verb
Hiirse,

Now we'll set up a simple instrument, it will be a clock of sorts that tells us how many
minutes we have been playing. We'll use a numerical instrument (one that displays
numbers) for the minutes, and we'll use a dial for the seconds. Go back to the main
control panel and follow General — Instruments — Create. Do this twice as we want
controls (of course you knew that didn't you!), make the first one a numerical
instrument, and the second one a dial. Now follow General — Instruments — Edit.

Don't panic! Click on set and position the numerical instrument in the black box in the

bottom left of the border. Return to the panel by clicking on the right mouse button
when the instrument is set. Click on store before you move on fo set the dial otherwi
all the changes you have made to this instrument will be lost. This dial will count
minutes and will take its value from one of the variables available to the user in
procedures. We'll use variable 53 (because | like that number) for the numerical

counter and variable 54 for the dial which will count the seconds. On the panel set the
variable to 53. The two values underneath define the range of the instrument, which i

this case will be between zero and 59 (because, for various reasons way too irreleva

to deal with here, there are 60 minutes in an hour). This will also be the range for the

dial. Set Value1 to zero (it should already be zero if you haven't been playing around
and set Value2 to 59. Store your work and then set the dial up in the left side panel

the border (next to the view window — you will have to make it a long thin dial). Set all

the variables on this instrument (fifty four, zero, and fifty nine top to bottom) and, afte
you've stored the result, return to the control panel.

To write the code to move the dials we need to create a global condition, a conditio
that will always execute no matter where in the world we are (such as time running
forwards). Other types of conditions are detailed elsewhere, so for now follow
Conditions — General Conditions — Create, and then follow Conditions — General
Conditions — Edit, and select the only general condition available.

A familiar window appears. Let's write some code.

There is a command in FCL designed specifically to handle time controls. Remember,
we do not alter the instruments in the code, we simply change the variable where thei
information is stored — 3D Construction Kit 2.0 does the rest. The command we are
looking for is called TIME. Yet again we are disappointed at the surprise value of the
command word, but can reflect upon its aptness for many days.

The code you need to type in looks like this:

Time (v52,v53,v54)

This tells the computer to look at its internal clock and store the hours in variable 52,

the minutes in variable 53 (which feeds our numerical instrument) and the seconds in

34

—

WAkl 54 (which sets the dial). If we wanted to, we could now go on to define
Wliumant three as an hour counter or dial and set it to variable. The command “Time"
::1- three variable numbers in brackets after the word, but, as we have

unatrated, a spare variable can be used.

Whan constructing a large program it is advisable to have a pen and paper constantly
¥ 10 note down variable numbers and the like, as this can save much tearing of
and gnashing of teeth at a later stage.

£W08 you've got the code in, click on okay and then enter test mode and perform a
Mal Il the dials don’t work then go back and check your code and whether you
mbared to store the values you entered before clicking on OK in edit instrument.
uihwr values on this panel (col1, col2 and font) refer to the foreground colour
L 0 hands on a dial, or colour of growing bar on a horizontal or vertical dial), the
iound colour, and the type of text (-2 is larger than -1, other fonts are to be
Inased ol a later date) respectively.

HIALS Just about everything you're going to need to create a seriously complicated
18, but for those who like everything animated and moving, we're going to look at
Ihs! lnature of 3D Construction Kit 2.0 that enables you to give your games the
Jissslonal edge. I'm referring to brushes, and brush animations.

A Bush Is a little piece of art, cut from a border, or any screen generated in an art
PRAge. Put several of these little pictures one after another and cycle through the
SRS A the whole bundle is known as a brush animation. There’s an excellent
W an the disks supplied with this program. It's called “World” and it's in a folder
Hrush”. Prepare to complete your formal education by following General —
» - Cut Brush. Find the brush and click on OK. A picture loads - it is a picture
ANy worlds stacked next to each other with a few large Frame Notes. Up at the top
vorner of the screen is a drag box — the same as we used to set the view
mw. tontrols, etc. The position and size of the box are shown on the small panel.
101 the box over the first globe (just testing — you can see it's already in the right
I 1he box, by an uncanny coincidence needs to be set to size 32 X 32 for this
{lsmember, a brush is a small picture that can be any size).

S first brush by going to co-ordinates 000,000 and clicking the right button. Now
| lha procedure and, for time's sake, cut out every second frame working left to
, 0 16 bottem. Your X co-ordinates will be 000, 066, 132 etc and your Y co-
ales will be 000, 032, 064, etc. When you have cut 11 brushes and returned to
sanliol panel we will continue.

S EAn check each brush is cut correctly by following General — Brushes > — Edit
WA This panel will also give details of the brush size and allow you to rename it.

—

35

TUTORIAL 7

Cycle through the brushes using previous and next and if a brush has been cut
wrongly delete it (following General — Brushes > — Delete Brush) and re-cut it.

Now we are going to animate these brushes by cycling them so that the world appeail L8l tlick
to turn; hopefully, in the process, we can put this flat world theory to rest once and fo
all and move on to some more constructive human endeavours. Click on General, the
on Brush Animations. Create an animation (no prizes for guessing that this is done!
by clicking on Create) and then follow General — Brush Animations > — Edit . There W

only be one entry on the list: select it.

Might click

Curaor

The panel we are presented with tells us the name and number of the brush i
animation, its status (on or off, but in more high-tech words), it’s on screen position (i
will be laid on top of the border, remember), it's speed and length (currently zero
because we haven't put any brushes in it), and its mode. There are two buttons next!
the title Initial Mode. The first button has six states. They are as follows: Single will
play the sequence of brushes once and then stop; repeat will cause the sequence to
play again and again; bounce will cause the sequence to play start to finish and then
finish to start, repeating infinitely; random means that brushes from the sequence wil
be played randomly one after the other; inactive means that the brush is not drawn;
stopped means the animation does not change but the current frame remains on
screen. The other button tells 3D Construction Kit 2.0 to play the sequence either
forwards or backwards. Set these buttons to repeat forwards and then click on edit.

Manu Dar

Bl bar

This new panel is very similar to the edit group attributes panel. Add the brushes tofl
animation list (in the same way as you add objects to a group) and put them in
numerical order. Put all eleven in. When you've done this click on OK.

Now click on preview. The new panel shows your brush animation playing. This is |
where you test the different speeds and modes. Play around with the edit panel and
check the results using preview. This way you will gain a thorough understanding of
brushes and brush animations.

Bition

Once you have set your brush animation running at a speed you like set its X and
positions to zero and 52 respectively. Set up the border we used earlier as border
number one, set the default border to one, position the view window, click on the eye
and press escape: Good innit? ;

Tant Box

Well, sadly we've reached the end of this rather happy go lucky tutorial. | haven't
answered all your questions, but | can guarantee you that the reference section won
seem half as horrifying now, and you should be able to find your own way through
from here. | wish you hours of fun and joy using 3D Construction Kit 2.0. Remember
the current record is six days... and he/shefit'they did a most excellent job.

Civinn o

Ilivaiad with a Right click).

Salsoting a menu item

8: THE USER INTERFACE REFERENCE GUIDE
8.1 Conventions

Click with the left mouse button
Click with the right button

The arrow onscreen that follows the movement
of the mouse

The pull down menu section at the top of the screen

Highlighting a particular menu item and clicking with the
left mouse button

Vertical bar used on the text editor, dialog boxes and file
selectors to scroll up or down a long list of text. You can
use the scroll bar in several ways. By clicking on the Up
or Down arrows, you move the window up or down one
line. By clicking in the long scroll bar outside of the little
scroll box, you can move the display up or down a page
at a time, depending on whether you click above or
below the scroll box.By clicking on the scroll box and
holding the button down, you can drag the screen up or
down by moving the mouse.

Onsareenllext box which, when clicked on, will perform
whatever its name suggests eg. OK

Onscreen graphic which, when clicked on, will perform
whatever function is attached to it

Onscreen text box which, when clicked on, will allow you
to enter a number or a string of text

Cross that marks the centre of the screen

36

37

- -

8.2 The File Selectol
PC+Atari ST

| RDAD-DRTA

Whenever you need to load, save or
locate a file on a disk, you will be
presented with the 3D Construction Kit 2.0
file selector window (fig. 8.2). At the top of
the window is a bar telling you exactly
what you are trying to do. Underneath that
bar is a file selector window which shows
all the files and directories in the currently
selected path. Attached to the file selector
window is a scroll bar allowing you to see
all the files in the directory. Underneath
the file selector window is a series of
buttons. The first button, PARENT, will
take you back up one level in a pathname
A sub-directory to a directory. Next to the PARENT button, are the DEVICES and
IS buttons. These list are the available physical drives and logical drives,
Jiclively. Clicking on one of these will bring the relevant list in the file selector
low, by clicking on one of these you can select the relevant disk. Next to the

MNE button is a button marked FILES+DIRS. Clicking on this toggles between
lying Hles only or files and sub-directories. Beneath this button is a button marked

thing on this automatically shows you all the files in the directory.

— | Whenever you need to load, save or
= locate a file on a disk, you will be
presented with the 3D Construction Kit
2.0 file selector window (fig. 8.1). At the'
top of the window is a bar telling you
exactly what you are trying to do. _
Underneath that bar are two sections, on
the left is the file selector window which
shows all the files and directories in the
currently selected path. Attached to the
file selector window is a scroll bar
R 2 allowing you to see all the files in the
Figure 8.1 directory. To the right is a series of
buttons. The top button, PARENT, will
take you back up one level in a pathname from a sub-directory to a directory. The
buttons below the PARENT button, are the available drives and by clicking on one of
these you can select the relevant disk. At the bottom of the drive buttons is a button =
marked FILES+DIRS. Clicking on this toggles between displaying files only or files ang
sub-directories.

= iRt
= o
- U EDERED

Beneath the file selector window are three text fields : MASK which controls what files
are displayed in the file selector window, PATH which contains the current path and
FILE which contains the current file. :

il 1he file selector window are three text fields : MASK which controls what files
pliyed in the file selector window, PATH which contains the current path and
contains the current file.

. -'_...J.. ul the bottom of the screen is a CANCEL button which will cancel the disk

Ml you were trying to perform, and an OK button which will return the filename
solected.

Finally, at the bottom of the screen is a CANCEL button which will cancel the disk
operation you were trying to perform, and an OK button which will return the filename:
you have selected.

38 39

Built into the 3D Construction Kit 2.0
editor, is a simple text editor for editing
conditions. When you go into the editor
(usually by either selecting the EDIT
section of a menu for one of the

fig. 8.3. At the top of the screen is a bar
telling you exactly what you are editing,
below that is a large square area where

Figure 8.3 that a bar with a box in which the scroll

bar allowing us to go up and down the

text we have inputted, at will. Beneath the text entry window is a status line which tells

us what type of condition we are editing, its name and number. Beneath that is a row
of buttons allowing us to do several useful things :

LOAD Useful for loading text from disk.

SAVE Useful for saving any text you have typed in to disk. This is useful
for two reasons : firstly you can keep a library of commonly used
conditions on disk and just import them when you need them and

secondly, you can use the saved text in other applications, or even

share it with a friend. The saved condition files are just normal
ASCII text files, so you can even edit them outside of
3D Construction Kit 2.0 and import them here.

Goto a particular line in the text. Particularly useful if you have a
long condition which is longer than the text window can hold.

GOTO

CLEAR
care, else there will be tears before bedtime!

6X6 (or 8X8)

for those with good glasses or monitors. The 6x8, although harder
to read does allow you to get more on the screen. The default font
size can be set from PREFERENCES (on the GENERAL menu).

For those times when things just aren’t going right, this will reset
everything you've done so no changes are made.

For those times when its all gone right and you want to keep the
changes you've made.

When you click on OK after editing a condition, the text is then compiled by the FCL
compiler built into the editor. If there is something it doesn’t understand (which is a
user friendly way of saying that you've typed some rubbish in) then it will display an
error message with two buttons OK and CANCEL. Clicking on OK will take you back
into the editor with the offending line highlighted, clicking on CANCEL will have the
same effect as clicking on it in the editor : all your changes will be lost and you will
sent back to the Freescape editor.

CANCEL

OK

conditions, or by clicking on the shortcut
icon for EDIT OBJECT CONDITION) you:
will be presented with a screen not unlike

we will be editing text, and to the right of

Will delete all the text from this condition. WARNING : Use this with

There are two font (character sizes) in the text editor — 8x8 which is
a nice large text for those with poor eyesight or tv's and a 6x6 font

From time to time you will do things inside
the Freescape environment which will
either be incorrect or will cause
something irrevocable to happen. When
this happens an Alert Box will appear (fig.
8.4). If the function you are trying to do is
just impossible, then the system will
inform you of this and wait for you to
press an OK button to confirm you have
read the message. If the function will
cause something to happen that can’t be
—._undone then an Alert Box will be
displayed, and you will be given the

Many of the menu functions, when
activated will bring up a dialogue box to
allow you to change some parameter (fig.
8.5). Dialogue boxes are similar to Alert
Boxes, but they may have any one of
three types of buttons :

These are groups of buttons that are mutually exclusive ie selecting
one of them, automatically deselects all the other buttons eg. the
WALK/FLY1/FLY2 etc. buttons in the vehicle dialogue box

These are buttons that can be toggled between a selected and an
unselected state eg. the INVITAN/WIR etc. buttons in the edit object
atiributes dialogue box.

lons there may text boxes to allow the entry of text or numeric data. Text
 edited by first clicking on the box with the mouse. You can then type in

. Pressing DEL will delete the character under the cursor and pressing
‘will delete the character before the cursor. Press RETURN to finish

fiome text boxes may restrict you to numerical data only.They may also have
J0x with a sliding bar to allow editing of long lists of data.

41

THE USER INTERFACE

8.6 Guide to the Screen

FILE CEJECT

When you run 3D editor, you will be

8.6 (if not, it might be time for that visit to
the Opticians). At the top of the screen is
the menu bar, to pull down the menu,
click in the relevant box with a right
click.To select a particular menu item,
click on it with a Ieft click. Click outside
a menu to remove it. Below the menu

N j| is the Freescape window and
T S R underneath that is the status bar
and user movement controls.

8.6.1 The Status Bar

On the left hand side of the bar underneath the Freescape window is the status
window. This window is used so that the system can help you keep track of what's
going on at any time. To the left of the status window are two arrows which allow you
to scroll the status window up and down. The various information in the status window
falls into four categories:

World section (fig. 8.7)

The top row shows the user’s position in
the three world axes, the middle row
shows the user’s rotation along the three
axes, and the bottom row shows the
user's movement mode and height.

¥'| pos
2 xdﬂﬂg] 3@3 z400

¥ Hboe" uaLk PeToHT™ 270 |

Figure 8.7

Object section (fig. 8.8)

The top row shows the current object
number and name, the middle row shows
the object’s position in the world and the
bottom row shows the object’s size.

Figure 8.8

presented with a screen that looks like fig:

42

Ve

THE USER INTERFACE

Area section (fig. 8.9)

The top row shows the current area
number and name, the middle row shows
the number of objects in the area and the
number of facets in the current view. The
bottom row holds various status
information about the system :

89

~ Amount of time taken to move all the objects and the player through the world
und parform collision detection.

= Amount of time taken to perform the 3D maths.
= Ammount of time taken to sort the objects in display order.
~ Amount of time taken to actually draw the display.

~ Amount of time taken to copy the screen across (only really useful on the PC).

PC (fig. 8.10)

The first two rows show the free memory
in the system :

Memory Section

'E MEMORY 1
MORY 2

0 =
L Free Memory 1 — The amount of memory

used for the world data

Free Memory 2 — The amount of memory
used for fonts and brush data

The bottom row shows the total free
memory available in the system

ﬂ' His! row shows the amount of free memory available in the editor, the second line
SWa e total amount of free memory available in the system.

43

THE USER INTERFACE

8.6.2 The Freescape controls (fig. 8.11)

Next to the status window are the
Freescape movement icons which allow
the user to move about the screen. These
are (working left to right) :

Figure 8.11

Top Row :

Cross-Hair : Toggles the centre marking on and off
Turn Left : Rotate the view point left

Move Fwrd : Move the view point forwards

Turn Right : Rotate the view point right

Move Up : Increase the user’s height

Bottom Row :

Flip : Flips your view through 180 degrees
Move Left : Move the viewpoint left

Move Back : Move the viewpoint back

Move Right : Move the viewpoint right

Move Down : Decrease the user’s height

8.6.3 The View Controls

The final section on this bar is the view controls. From left to right these are :

Centre View : Reset the view position to flat and straight ahead

Look Up : Move the horizon down
Look Down : Move the horizon up
Tilt Left : Tilt viewpoint left

Tilt Right : Tilt viewpoint right

44

THE USER INTERFACE

w:t Shortcut Icons

bollom of the screen are the shortcut icons. These are buttons which when
ui call some of the more commaonly used functions. They may be disabled
W Il menus to increase the Freescape view window size. From left to right these

.;.l‘

d8 Object, Delete Object, Edit Object Condition, Edit Object Attributes, Colour
. it Object, Duplicate Object, Select Object, Test Mode, Reset.

L8l The Object Editor Icons

When you select Object Edit mode, from
either the menus or the shertcut icons,
you will be presented with a series of
icons like fig. 8.12. These are grouped in
sections as follows :

allows the movement of individual points on an object.
Move point into screen Move point up

Move point out of screen Move point down

Move point left Move point right Select next point
0 Object : allows the rotation of object about each of the axes

Rotate forwards in Z Rotate forwards in X

Rotate backwards in Z Rotate backwards in X

Rotate backwardsin ¥ Rotate forwards in Y
Sl Object : allows the selective reduction in size in each axis

Shrink object Z+ axis Shrink object Y+ axis

Shrink object Z- axis Shrink object Y- axis

Shrink object X+ axis Shrink object X+ axis
o —

45

iz 223 T
it - e -

s e e T it
B 1 ! b
it bl g e ol

A o ol N e

o i

b e

Stretch Object :

Move Object :

allows the selective increase in size in each axis
Stretch object Z+ axis Stretch object Y+ axis
Stretch object Z- axis Stretch object Y- axis
Strefch object X+ axis Stretch object X+ axis

moves the whole object in any of the axes

Move in Z+ direction Move In Y+ direction
Move in Z- direction Move In Y- direction
Move in X- direction Move In X+ direction

The final set of icons are system icons. These are :

UNDO
SELECT
OK

Undo up to 10 previous operations
Allows the selection of a new abject to EDIT
Finish editing the object

When colouring an object you will be

presented with a panel like fig. 8.13. This

is split into three sections. The first

section, on the left, shows the colour of

each of the facets of the object your are

editing. Clicking on any of these squares

will make that colour the currently

selected colour. Clicking on any of these
squares with the right button will colour
that facet in the currently selected colour.
The second section is the actual colour

, palette. This contains all the shades that
you can use to colour objects. The first

] colour (marked with an 1) is invisible and

‘with this colour will not be drawn. The currently selected colour is highlighted

shiing square cursor. By clicking with the left button on any colour in this area

Mmake that the currently selected colour. Final, on the right hand side are the

n which will reset all the colours to their settings before you entered the

itor, the OK button which exits with the new colour settings, a large block

he currently selected colour and it colour number.

the above method of selected facets, you can click on an object facet (if it
» view window) to select or change colour. Click with the left mouse

e the facet's colour the currently selected one, and with the right button

ot to the currently selected colour.

o

9: THE MENUS REFERENCE GUIDE

To enter the debugger click on DEBUG
any of the condition menus. Once you
have selected the particular condition yo

want edit, you will be presented with a 1 of the reference manual gives details of every option available on the
panel like fig. 8.14. In the top left hand 4 the program components altered and alterable by and through these
corner of the panel is the name and The section is ordered left to right across the menu bar and then top to
number of the condition you are noh bar.

debugging. Next to this are the flags : Z
the zero flag which is used in conditions
a 0 here means the condition is true, M
the mode flag — if in a conditional
statement this will show if the program |

le Menu

Figure 8.14 waiting for another condition and how it
will be merged with the current condition E : s . , :
state. The M flag can either be A to show that the next condition will be ANDed, O for e various function for interacting with the outside world.

ORed, N for NOTed or a *-" if it is not active. The final flag, F, is the wait state flag ant
these can be can be toggled on and off by clicking on them. The two flags are W for

e o L 1 Saves an entire world. This includes all areas, objects, conditions
F and sound data.

Below the information panel is the command list. This displays three lines of the
condition your are debugging. You can scroll up and down your condition by using the

up and down arrow icons to the left of the list (with the left mouse button), or by using T/ Loads an entire world. This includes all areas, objects, conditions
the up and down arrow keys. The end of the condition is marked by —{END}—. The 1 and sound data.

current PC (program counter) position is marked by a >> symbol in front of the

command and you can change its position by using the right mouse button on the NB This will overwrite any data you currently have

scroll icons. : stored in the program.

Below the command list is a variable display containing the value of three numeric | = .
variables and one string variable. You can modify which variables this panel is looking _ Saves the currently sglﬁed‘ e er?;tThls will include all the objects
at by clicking on the variable name : a dialogue box will appear allowing you to enter 4 and conditions associated with that area.
new variable number. At the top right of the control panel are three buttons : EXEC
which will execute the command at the PC, SKIP which will skip the current command
and move the PC to the next command and EXIT to leave the debugger. . Loads the area from disk into the currently selected area.This will
include all the objects and conditions associated with that area.

NB This will overwrite any data in the current area.

Saves an object (or group) and its associated condition(s).

Loads an object or group. A dialogue box will be brought up to.
allow you to load the object at one of three positions. Either at its
saved position, or into the current area at the current viewpoint, or
at a position and rotation specified by the user.

48 49

SOUND
The sound entry section.

Pc
LOAD
INFO

REMOVE

Amiga

LOAD SAMPLES
EDIT SOUNDS

BORDERS
LOCATE

ADD

REMOVE

VIEW

EDIT

Resets 3D Construction Kit 2.0 as if the program had just

been loaded. All data is cleared from memory (and should
therefore be saved first).

Deletes a file from the disk.

Load a sound file in to memary.

Shows an information box with the currently selected aud|
driver, the drivers available and the amount of memory
consumed by any loaded sound file

Turns the bottom icon bar off thus enlarging the view
" window. All of these functions are also available through
the menus as noted within this guide.

Delete the loaded sound file from memory. Memory is ' W
returned to the system. | '
Credits for 3D Construction Kit 2.0

You played with the home version now use the professional
version like the big boys!

Load a sound module in to memory.

This brings up a dialogue box that allows you to edit the

: ; Leave 3D Construction Kit 2.0 and return control to the
sounds (see the sound editor section for details).

operating system.

Allows you to tell 3D Construction Kit 2.0 in which disk
folder the borders are stored. NB All borders used within a
3D Construction Kit 2.0 designed world must be stored in
the same folder.

Adds a border from the located disk Iuldér to the
borders list.

Removes a border from the border list.
Allows viewing of any border on the border list.

Allows editing of the border information for any berder on
the border list. It brings up a dialogue box which allows yo
to change the border name, whether the current area
colours are to be as kept or whether they are to be
changed to those in the picture, and whether the border is
to be cleared in the area currently occupied by the
view window.

50

Figure 9.1
VEHICLE

HIGHLIGHT

LOCK

| Menu

NCES (fig. 9.2)

| The menu with all the user setup stuff. A
up as you would like it. If the preferences

set on the panel are saved then
3D Construction Kit 2.0 will automatically
" () load with these preferences installed. The
MODE (fig. 9.1) ; editable options on the panel define your
; movement rate, object movement rate
(useful when editing objects), the default
font (either 6 x 6 pixels or 8 x 8), and
5| whether auto select is on or off. When
auto select is on, the object currently
selected on the object list will be
automatically used for any object
Al : il | manipulation command. This saves a lot
ows you to set your viewpoint in the game and your d selections of the same object from the object list. To change the selected
mode of movement as well as allowing you to make at click on the eighth icon button (a hand with a finger pointing right), or

absolute moves to any point in the area and any rotation. 5 icki i
i e [e are bjects by clicking on them in the usual manner.

Allowg the selection of various movement
and display modes.

WALK is the default mode that only allows ground travel. JWH =9 o
=] Allows you to set the game's initial state /

FLY1 allows aerial movement but forwards movement <R state after a reset. Editable parameters
always remains parallel to the ground. o | are the name of your world, Climb and
Fall abilities ie the maximum distance you
pet LR ' can climb and the furthest distance you
FLY2is like FLY1 but forwards movement is calculated s A S can fall (nothing actually happens to you if
relative to rotation around all of the axes, which means that aegal you fall except for setting the maximum
you move in the direction you are pointing. P ' distance fallen system variable (V10)).
| You can also set the furthest distance you
{lza| can be from an object and still Activate it,
LOCK and CAM1-6 These are general purpose view 0 S| the Timer Delay value, the Start Area and
positions which can be set to whatever values you require . - Entrance, initial movement Mode, and
and later recalled to set you back in the same position. g - the first Border that will be used. The
Timer Delay is general purpose timer that
time a reset is performed in the world. When it has passed the value
Allows control over the way various objects are displayed. G n units of 50th of a second*) then the TIMER? condition in FCL will
hWhanhHIﬁH#IGfI;IT is on the currently selected object will ue.
ave highlights flashing around its extremities (can you say. -
that legally?) and when EXCLUDE is on, only t(he cn.!:rrrentlyy' 80th of & second on NTSC Amigas
selected object will be drawn.

o I Bmeei !

Asks you to select an object from the object list. The lous sections of the virtual world.

program will then move you so that you are looking directly v

at the selected object from whichever direction you specify.

Your mode will change to LOCK, as if selected from the Resets an object's attributes back to their default state.

Vehicle panel. t This will not reset any changes made using the Edit Object
option, but if an object has been faded, activated, moved,

52 1 53

THE MENUS

etc., during the course of testing then it will be placed as
was when you began the test.

Gives access to the editing panel where
instrument parameters may be defined as
follows: Name, position and size on
screen, source variable for the instrument,
range (upper and lower points),
foreground and background colour, and
font. Allows drag and strefch setting of
=1 instrument on border. Store must be
1 clicked to finalise edit before changing

1| instrument or leaving the panel, otherwise
new information will not be stored.

AREA As reset object but applies to every object in the area
rather than one specific object.

WORLD Resets everything including your position but does not
clear any data. This command is also performed by the
exclamation mark icon in the shortcuts panel.

CONTROLS (fig. 9.4)

Removes an instrument from memory and erases
: its definition.
Allows you access to the control editor.
You can set a control’s position on screal
either in absolute terms or by visually
dragging and sizing a box (using the Set
option). The FREESCAPE button will set
the icon size and position values to -1,
which indicates that the icon definition
be the same as the Freescape view)
window. The Undefine button will reset th 1 A 7
PI= button to the state it was in before you Will ask you to select a picture file to load
o started messing around. You can assig and then display it on the screen. There
Figure 9.4 key on the keyboard as well as a mouse @ | | rrares will be a square dotted drag box which
movement to each control. The functions of the keys are defined but extra controls ct : you can move around the screen by
be specified by procedure number. clicking on the left button and holding it
down whilst you move the mouse. You
FRAMES can adjust the size of the brush by clicking
and holding down con the small box in the
corner of the larger one. When you are
happy with the position click with the right
mouse button.

| use of small square sections of graphics from other graphics programs.

8H (fig. 9.6)

"= | FRAMES

FRAMES

FRAHES

INSTRUMENTS

CREATE Adds a new instrument of a type specified on the panel to
the instrument list. Text windows are used for alphanume
text, numerical instruments for numbers, horizontal and
vertical instruments for strength/energy bars, and dials for
clock type readings.

Using this mode you can preview all the brushes that have
been cut in this session. Click on NEXT and PREY to scroll .
through the brushes. -

Useful for removing any redundant or incorrectly
cut brushes.

BRUSH ANIMATIONS |
This section of the menu is used to composite brushes together to make animations, 4 you to choose the actual brushes you want to use and what order they are
I, Click on ADD to bring up a list of available brushes. Select a brush and
OVE to remove it. Click on CLEAR to clear the whole list (drastic | know

L] CREATE Click on this to create a new animation. 168 you just have to do itl).
|
EDIT Clicking on this brings up the edit dialogue box. 4
! DELETE Remove an animation from memory. W WINDOW

ilﬂlng of the view window either by the direct entry of on screen X and Y
i or by a drag and stretch method by c]:ckmg on SET. When in SET mode,

Edit Animation Dialogue Box coordinate display will allow you to load in a border for reference.

‘ This contains several fields (user alterable ones are in bold): 8 PC version, due to hardware limitations, the view window size and position

! Name : The name of the animation. 8 can only be a multiple of 8.
Number : The animation number ’
il Status : Enabled or disabled — disabled animations cannot be I FADE (fig. 9.7)
i activated from within FCL This allows the editing of the user fade
X and Y positions : The position the animation will appear on screen masks. At the top of the dialogue box are
#x). g a row of six buttons numbered 10 to 15,
Initial Mode: This is the way the animation will be sequenced. these salect one of the user fades. Below
These are : that is a matrix which is the actual fade
REPEAT Continually repeat the animation. When mask. A black square in the matrix means

a solid pixel will be plotted, an empty
square indicates nothing will be plotted.
At the bottom are the good old CANCEL

the animation reaches an end then skip
back to the beginning if going forward

he end.
deeoen ~ i (to forget your changes) and OK to save
BOUNCE Move backwards and forwards through ‘them.
the animation. |
. RANDOM Display frames randomly. -
} INACTIVE Do not display (unlike DISABLE this can ey
be over-ridden by FCL). PC Only)
PED Do not animat isplay th A User to change the palette of colours at their disposal. You will be
Plte cu.i:e?-lt?rnalme.e BHdO SRRy e | with Red Green and Blue sliders to alter the individual components of a .
. : i liok on SELECT to choose which colour to edit. Click on VIEW to see the
| SINGLE Dp animation once in the specified mur colour change (right click to return). Click on CANCEL to forget your =
il direction. 1 OK to save them.
i Direction : Describes which way the animation will be displayed, eithe;

from the first frame to last (FORWARDS) or from the last

| frame to the first (BACKWARDS).
| EDIT Click on this to edit the brush list .
| PREVIEW Click on this to see your animation in action v you to record a sequence of actions and play it back using FCL.
CANCEL For those times when it all gets a bit much and you don't '
. want to keep what you've done. BEQUENCE Places an empty sequence on the viewpath list.
il || OK Walt has nothing on you — save that animation for later!
56

I

| RECORD SEQUENCE Once the viewpath has been selected, the user is ! AREA Menu
presented with a “VCR" type control panel on which they ; :
may record and play back a series of moves within ifious functions to manipulate Areas.
Freescape. The buttons on the video recorder, left to right,
represent Stop, Record, Rewind to start, Play, and Mark . . , a ;
end point (all information from the current position onward AREA Adds a new “unfurnished" area to the area list.
is erased). The information displayed is time and moves 4
both complete totals and to the current position. The nama
and number of the viewpath are also shown. Allows alteration of a selected area's basic parameters: its
name and whether it has a visible horizon. An area's scale
is also defined here and the default border to use.
| EDIT SEQUENGE Allows editing of th_e selected viewpaths parameters. NB Although each area has its own default border, the area
. Allows the start point of playback to be defined or for the defined as the START area will use the BORDER defined
i | viewpath to be followed relative to the player's position. as the start botder in DEFAULTS.
Playback modes are Realtime (exactly as entered) and
| Mormal (where the moves are made but any pauses
| between them are removed) and are toggled on the panel. Deletes the specified area from the area list
| | The viewpath can be made to repeat a user specified F

number of times (the repeat count) and should a defined
start position be desired for the viewpath it can be

stipulated on this panel as either an area/entrance specific.
or by both position and rotation co-ordinates.

Puts the selected area in view and allows its objects,
conditions, etc. to be altered.

DELETE SEQUENCE Removes a sequence from the viewpath list. Allaws o cdiing ofthiei GieoloUG isekiogeach ared.

Creates an entrance at the user's current position and
TEST Puts the program into test mode (but does not reset the rotation and adds it to the end of the entrance list.
game) allowing the user to interact and test their controls,
instruments, borders, and general gameplay. To perform a
reset (and thus load the border) the user must press the
escape key. This command is functionally identical to the

ninth (eye) icon en the Shortcuts panel.

Gives access to the entrance panel. The list can be moved

through with the “next” and “prev” buttons and the position i
of the entrance can be set either through entry of absolutes

for position and rotation, or by setting the user's current

position as the entrance. Other buttons allow the user to go

to the entrance and also to view from the entrance (the

user's position and rotation remain unchanged, and the

display returns to current as soon as the mouse button is

released). An entrance's name can also be changed here.

Removes an entrance from the entrance list.

Moves the player to the selected entrance.

9.4 The OBJECT Menu
Everything you need to mess around with objects.

CREATE OBJECT (fig. 9.8)

E——

TYPE

Takes a primitive (basic object shape)
from the available options on the panel
and adds it to the object list, placing it in
the players view. Groups (three small
cubes) and Sensors (satellite dishes) i
also be created from this menu.

Figure 9.8

EDIT OBJECT

DELETE OBJECT
SELECT OBJECT
used
PREFERENCES

COPY OBJECT

ATTRIBUTES

Allows manipulation of the physical conditions of a seleci®
object. The corner points of most objects can be
individually moved, all objects can be turned, shrunk and
stretched, and moved around the area. It is through this
command, which is identical in function to the sixth icon
button on the Shortcuts panel (box with red extensions),
that the visual architecture of the world is performed.

Deletes an Object or group from the Object List.

Selects an object from the object list. This function, also
performed by the eighth (pointing finger) icon button is
in conjunction with auto select (see the
menu entry).

FENSOR:

After the desired object or group has been selected the
player is asked to position the duplicate either beside of
of the faces of the subject, or in absolute terms of positiol
co-ordinate. This function is also performed by the sever
icon on the Shortcuts panel (two boxes and a red arrow)

Allows exact positioning and sizing, fade
control, and control over the object's
attributes through toggle button. The
toggle buttons are representative of the
following object capabilities:

_EFY| Figure 9.9

Whether an object is visible (off) or invisible.

Whether an object is destroyed or not (off).

Whether an object is represented as solid (off) or wireframe.
Whether the player can pass through the cbject (on) or not.

Whether an object is permanently static (off) or movable ie whether
it can be included in an ANIMATOR list.

Whether the object is a sensor (on) or not.
Whether the object’s colour is fixed (off) or changeable.

Whether the object condition executes only on collision / activation /
shooting (off) or whether the condition always executes.

Whether the object will be animated if the group of which it is a part
is animated (off) or not.

Whether the object is a Transporter (on) or not.

if the selected object is a transporter or a sensor then access is
given to two other panels as follows:

Direction of sense can be set as well as any sound to be
activated on triggering the sensor. Any procedure designed
to be activated is named here, as is the sensor's type
(shooting or detection oriented), range, and speed

of response.

INANSPORTER: The area and entrance to which the player will be

This command functions in the same way as the fourth (
and cross) icon button. Performs differently depending o
whether the selected item from the object list is an object
a group.

FAULTS:

transported are set on this panel.

Set the attributes that will be applied to the object after a
reset is done. The ones affected are INV, WIR, DES, TAN,
object position and FADEVAL.

-

61

R e

Far groups: CONDITIONS Menu

Access is given to a panel that allows the group’s name to be changed, and also menu to come to when you want to mess about with FCL conditions (and
allows objects to be added to the group by selecting them from the object list after -
clicking on add, or removing them by highlighting the relevant object in the group’s
object list (left side of the panel) before pressing remove. Identical to the menu optio
EDIT GHOUP. 0 NDITIONS

itions which execute anywhere in the world.

COLOUR This option provides the same facilities as the fifth icon of
the Shortcuts panel (three intersecting coloured circles).

For more information see the User Interface section. Enter those General conditions here (see the User

Interface section on the Text Editor for more details).

. i Creates a new blank general condition which is added to
EDIT GROUP (fig. 9.10) e the General condition list.

After selecting a group, access is given | Removes a General condition from the list.
a panel that allows the group's name to @ -

changed, and also allows objects to ba

added to the Q'f‘:”p by s._electmgégam frof A Allows access to a panel of basic parameters for the

the object ||'_'3t a err?.“ct:'i!"ﬁ;" il ' General condition. The condition’s name may be changed
'%’F‘D’".”gr“ em by hig JaTne e o : and it may be enabled or disabled here. This panel also
object In gegmups object list (left sida g allows the user to decide whether the condition continually
the panel) before pressing remove. y executes, waits for a frame update between executions or

Identical to selecting a group from the - el e s
e : cuted until it is triggered by another Condition /
P object list when in OBJECT ATTRIBUTE Brisadira T Acadio

Figure 9.10

Got those problems then this is your man. (See the the
User Interface for details on the Debugger).

NDITIONS

onditions that are specific to the area and operate when the player is in the
rea used is the one currently in view.

O imands work in the same way as those listed in General Conditions but

iyl

| Conditions (obviously).

OBJECT CONDITIONS

These are conditions that are run when an object is shot, collided with, or activated,
They can be set to run always by clicking on ALW on the object attributes screen.

EDIT Works identically to the editor for General Conditions but
applies to objects. This command is identical to clicking o
the third (question mark) icon button.

INFO This works similarly to the Info command for General
conditions except the process flags are available for setll
and clearing. Here's what they mean:

DEBUG Identical to Debug on General Conditions but applies to
Object Conditions.

ANIMATORS These are groups of FCL commands that move objects af to turn any or all of the conditions on or off both in the editor, and in
groups around the area. Each type of condition is listed and its status in both the game and the

EDIT
CREATE
DELETE
INFO
DEBUG

All of these commands work in the same way as those listed in General Conditions b
apply to Animators.

INITIAL CONDITIONS

These are Conditions which execute when the program first starts, and when the
game is reset.

EDIT
CREATE
DELETE
INFO
DEBUG

All of these commands work in the same way as those listed in General Conditions b
apply to Initial Conditions.

10: Introduction to the Freescape g o program
mand Language (FCL e i ,
Com guag (IC) Wi lmrt programming, we need to do a bit of setting up. Select the CLEAR ALL
: : : . 0 FILE menu and click on YES when the warning box comes up. Now

By now you should be reasonably happy with creating quite complex objects by am ne Memads : : :
starting with the simple primitives and using the editor to bend, stretch, re-colour and e crea:te ub*ecl) ar)td 53!‘:}“ e;c:.;ba. This should put a nice cube in the
combine them. Maybe you are a little uneasy about building a utopia starting with twa wtllfl\;:!mr{: el anésrgro ab yﬁme to go and have a lie down). From
cubes and a straight line or, on the other hand, maybe you get a buzz out of stuff lika R W & Céqu%l?fl_%ﬂsa SE‘WP& eare ”[g'n'_ :eady to write ng first piece of
that! Either way, you should be capable of creating something and moving round the tg a?;t' Wibor it m;nglanl select EDIT from the OBJE bT
world to view it from different angles. The problem at this point is that it does not do 4 e 9 ; "C'I'é‘ eg = Ruoct 50 phct "'I‘e"“ comes up, select object number
awiul lot, other than sitting there and looking terribly pretty (or wonderfully ugly, WIZ:T?SNSH‘P; thE presqrn::_ad_ “"I‘_l ? =3 gray b"c’i‘ with the words *EDIT
depending on your sense of aesthetics). What we need to be able to do is to make et - axiog.:i‘to i5 15 the exfj‘edltor used la edit 2l Conditions
objects interact with each other and the user using the Freescape Command iormation on the text editor see Appendix 2). Type in the following FCL
Language (FCL). | appea 15 here (press the RETURN kﬁ}’ at the end of each line) and click on

What is FCL?

Imagine that the first thing you do in the morning is make a list of the chores you ha

to do that day (that's funny : the first thing most people do in the morning is wake up) !

It might look something like this : _,,1-_ with an error comes up go back to the editor and check that the line
ighted is correct. Once you have correctly entered the program you should

he main edit screen. Move the mouse cursor over the cube you created

_ Make breakfast Il click either mouse button. All being well, the cube should disappear. If it
fatulations, you've just completed your first FCL program (you may have to
- Take kids to school 0f 1o the cube to get it to disappear with the right mouse button). If it does

. Do the shopping BT, go back to the object condition editor and check that the code is exactly
. Pick the car up from the garage 3

- Buy a birthday present for Bob il vory well," | hear you scream in frustration , “but what's going on?”. Well
) FCL command that makes an object invisible. The 2 in brackets tells the
Himand that object number we want to make invisible is our cube, and is
This list of instructions could then be broken down even further. For instance, “Make Al command parameter. Most (but not all) commands have parameters,
breakfast” could be broken down into: y INalers are always in brackets. Now, if you remember that far back, we said
| sonditions are only normally executed when the object is “interacted” with.
press either mouse button over our cube, the condition for that object

. Get milk from fridge lave just written gets executed, making the cube invisible.
! . Pour milk into glass
. Put bread into toaster |
etc. | 40 any further there are some basic principles we need to know.

g Eventually, you will end up with a list of tasks that can not be broken down any further
OK, | hear you say, this is great for my cholesterol level, but what has it got to do with
FCL. Well, FCL is a set of english-like commands, that the computer understands,

, which perform individual tasks. These commands are analogous with our simple iy small piece of a FCL condition.
breakfast tasks. These can then be combined in a list, like the one for making o - ; ; o
breakfast, to perform more complex tasks. These lists, or programs, are known as i counter: this marks the next line to be executed in your FCL condition.

Conditions in FCL.

i S
s : BEESR
2 shppiashladail iy vy i
: FCLT “\,\. lm bl

2) Variables and constants

The world we live in is littered with variables and constants (unless you live in

California, which occupies a different universe to everywhere else). Simply put
variables are quantities that change and constants are quantities that don't. So, for
instance, the speed of light is a constant but the speed of a car is a variable. In FCL,
there two sorts of constants and three sorts of variables.

Slring variables. In the way that numeric variables store numeric values that
INge, string variables store text strings that can change. String variables start
ith an S and finish with a number between 0 and 31.

) Arrays are like numeric variables but each one is made up of one or more
fents, each of which can contain a number. If you imagine a variable as
gket, then an array is a row of buckets. They always start with an A and end
number between 0 and 15. Before you use an array you have to tell
nstruction Kit 2.0 how big the array is going to be, this is know as
sioning the array. Once this is done then each element of the array is

ad by putting a number in square brackets after the variable name, this is
as the subscript. ' -

(i) Numeric constants: As the name implies, these are simply numbers. The
can be specified in one of two ways, either as normal decimal numbers that
everybody knows and loves, such as 14 and -567, or as hexadecimal numba
Hexadecimal (or hex) numbers are calculated in base 16 rather than the base
10 we are used fo and have a $ symbol in front of them to distinguish them fig
normal numbers, for example $1456, or $FFFFAEF (I know it's hard to belie
but this really is a number. Hex numbers are only of use to the great unshavi
of the world who like to stay up to 6:00 am with their eyes glued to their monild
In other words only programmers use them).

RFARRAY(A1,10) Give array A1 10 elements
AR(4,A1[5]) Set the 5th element of the array to 4

subscripts start at 0 rather than 1, so in our previous example the first
mmant of the array A1 will be 0 and the last element will be 9.

ii) String constants. These are used for normal text and are always
surrounded by double quotes. '

eg
“THIS IS A STRING CONSTANT"
“and so is this"

ommands
y different types of commands in FCL but they can be roughly divided
but this isn’t - just making sure you are paying attention! o

Itis important to note the difference between a numeric constant and a string
constant containing a number. If you need to use a number in a calculation
itis stored as a number, however if you want to include it in a string it must bi
surrounded by quotes. ;

eg
1234 is a number, “1234" is a string

- Variable modifiers. These are commands that are used for setting and
iifying the values of variables. For example, ADDVAR which adds two

rinbles together.

-~ fiystem commands. These are commands which cause special things to
ppen in the system, such as DELAY, which will make the system pause for a
yun amount of time. .

NB You'll be grateful to know that no programmer has yet come up with
a new text system that has 35 letters instead of 26 and that works in "
seven dimensions! /O (Input-Output) Commands. These are commands that allow FCL to
iruct with the outside world. They fall into three categories:

iii) Numeric variables. Quite often when you are programming, you will find e cgfge?":mf?etf‘f e-tcailuws the user to read and write to the screen to
that you need to keep track of a value that may be changing, such as speed. & i ;
Unfortunately, a constant is no good if the value is constantly changing. You
can change the value of a variable whenever you need to. Numeric variables
always start with a V and finish with a number between 0 and 511. The
variables VO to V29 are known as system variables and are covered in detail
later in this manual.

Flle commands — these allow FCL to access the disk filing system

lystem I/O — allow FCL to get various data from the computer, such as
16, time, key presses etc.

68 69

I
g

iv) Object commands. These commands allow the user to nj.odiFy objects from
within a FCL condition. As well as commands to stretch, shrink, rotate etc,
there are commands to change the object’s attributes, such as making it

visible and invisible.

v) Loop commands. These are commands that are used to repeat sections of
FCL code. To go back to our breakfast analogy, we might have a procedure
called make orange juice that looks something like this :

. Put Orange in juice extractor
. Extract juice
. Pour into glass
This is great if you only want a small quantity of juice, but if we want more than
that then we need to repeat the action.
eg
. For each orange
. Put Orange in juice extractor
. Extract juice
. Pour into glass
. Repeat until there are no more oranges left

In FCL there are two types of loop : the LOOP AGAIN loop and the FOR ...
NEXT loop (thus winning the award for the most amount of loops in one

sentence).

LOOP...AGAIN

The command LOOP is placed at the start of the piece of code you want to
repeat one or more times and has one parameter, which can either be a
number or a variable, which tells FGL how many times you want the code to
loop. The end of the piece of code is marked by the command AGAIN.

eg

SETVAR(0,V30) ; Make V30 zero

LOOP(5) : Repeat this code 5 times
ADDVAR(1,Vv30) ;add 1 to V30

AGAIN : End of repeat loop

: V30 will now equal 5

It is important to remember that the LOOP command only checks the loop valug
the first time it is invoked, so if you use a variable as the loop counter, that
variable can be modified within the loop with no ill effects at all.

FCL TUTORIAL
eg
SETVAR(10,V30) ; Make V30 ten
LOOP(V30) ; Repeat this code V30 times (ie 10)
ADDVAR(1,V30) ;add 1 to V30
AGAIN ; End of repeat loop
; V30 will now equal 20
FOR....NEXT

As with LOOP...AGAIN, this allows the execution of a piece of FCL one or
more times but it differs in the way that it calculates the number of times to
execute the code. FOR takes four parameters :

FOR(P1,P2,P3,P4)
P1 is a variable that will be used as the loop counter
P2 is the initial value that variable will be given

P3 is the value at which we want the loop to stop
P4 is an optional value saying how much we want to add each loop

When the FOR is executed, P1 is set to P2. The code is then executed until
MNEXT is reached. At this point P4 (or 1 if P4 was not specified) is added to
P1 and if P1 is not equal to P3 then the program counter jumps back to the
first line after the FOR (| hope you're following this — | may be asking
questions later). So, for instance the line

FOR(V30,0,10)

would execute the code 10 times, with V30 starting at 0 and ending at 10. It is
important to note that when V30 is 10 the code is not actually executed,
because the FOR....NEXT only works UNTIL P1 is equal to P3. It is alse
important to remember that because the variable specified by P1 is checked
every time around the loop, changing the value within the loop could have
odd effects.

vi) Conditional commands.

Time for some practical wark. If you think that | am mad then | want you to
stand on one leg and shout else continuing reading. OK, you can stop shouting
now, | SAID YOU CAN STOP thank you. “Ah," | hear you say, “the pressures
finally got to him and he has gone completely mad”, but you are wrang (maybe).
This was just a sneaky way of introducing the concept of conditional

commands. These are commands that tell the FCL system to only execute a
particular piece of program if certain specified conditions are true. For instance,
| said earlier that, normally, object conditions are only executed when one of
three interactions with the object take place ie left mouse button with cursor
over object (known as Shooting), right mouse button with cursor over object

70

71

(known as Activating), or colliding with the player or another object
(surprisingly enough, known as Colliding). It would be useful when the
condition is executed, to know why it was executed and to react accordingly.
This can be done using conditional statements.

Time for an example methinks. Click on RESET to get your cube back. Go
back to the edit object condition screen for our cube, click on CLEAR and
click on YES when the warning box comes up. Type in the following text and
click on OK (again, if a compiler error box comes up, go back to the editor
and make sure that you have entered it exactly).

IF SHOT?
THEN
INVIS(2)
ENDIF

Let's go through the code line by line to see what's happening :

IF SHOT?

The first word, IF, marks the beginning of the conditional block. The SHOT? is
a command which checks to see if the object condition was executed
because the cube was shot. There are a series of indicators, which are used
whenever an object is interacted with, these are known as the Object Flags.
These can be checked, as we do here with the shot flag, in the condition to
find out what happened.

THEN

This marks the beginning of the program to be executed. This is useful
because, as you'll see later, its possible to chain conditions together to make
quite complex checks.

INVIS(2)

As before, this makes the cube disappear. The difference now, is that it will
only happen when the object is shot.

ENDIF

This tells FCL where the end of the conditional section is so that it knows how
much program to skip over if the condition is not satisfied.

FCL TUTORIAL

Whilst it is very useful to be able o only execute pieces of program if a
certain situation accurs, it would be even more useful to execute one piece of
program if the condition is satisfied (known as the condition been TRUE), or
another piece of code if the condition is not satisfied. To go back to breakfast
again, we could say :

. If oranges in fridge
. then

. make orange juice

. else

. jump out of window

(This may seem a little extreme, but have you ever woke up on Sunday
morning with no O.J. in the fridge?)”

Go back into the object condition editor and modify the program so it looks
like this:

IF SHOT?
THEN
INVIS(2)
ELSE
UMOVE (10,0,0)
ENDIF

Again, try clicking on the cube with the left mouse button. As before, the
object disappears. Click on RESET to get the cube back. Now click on the
cube with the right mouse button — see it trying to run away! The difference
now is that we have put an ELSE section in. When FCL reaches an ELSE, it
checks the condition that was specified in the previous IF statement for been
in the OPPOSITE state. In our example above, this means that the program
between the THEN and the ELSE will be executed if the object was shot, and
the program between the ELSE and the ENDIF will be executed if the object
was NOT shot (in the case of our cube, this would mean we either Activated it
or Collided with it).

Another useful feature of conditions is the ability to chain them together. Back
to breakfast again (is this making you hungry yet?)

. If there are oranges in the fridge AND | am thirsty
.then

. make some O.J.
. else
. go back to bed

The important thing to note here is the use of the word AND to give what is
known as a compound condition. This means that | will only make orange
juice if we have some oranges and |'m thirsty, any other combinations, such
as | am thirsty but | have not got any oranges will result in my going back to
bed (and quite rightly too, in my opinion). The same effect can be achieved in
FCL, albeit without the oranges, by the use of the AND keyword.

eg.
IF SHOT? AND SOLID?2(2)
THEN

MAKEWIRE(2)
ELSE

MAKESOLID(2)
ENDIF

Try shooting the object now. You should find that it switches between
wireframe mode and solid mode. What's happening is that the MAKEWIRE
section is only executed if the object has been shot AND it is currently solid.
In all other cases, such as when the object was shot when it was wireframe,
will cause the MAKESOLID command to be executed.

As well as being able to chain conditionals using the AND command, it is alsg
possible to chain them using the OR command. This is similar to the AND
command but in this case the condition is TRUE if either or bath of the
conditions are true. So, if the first line of our program was changed to

IF SHOT? OR ACTIVATED?

then the MAKEWIRE line would be executed whenever either mouse button
was pressed over the object.

It also possible to reverse or invert the sense of a condition by adding the
command not in front of it, so, therefore, the line

IF NOT SHOT?
would be true if the object was not shot.

vii) Program commands. These are special commands that modify the way the
FCL condition runs. For instance, the END command will force FCL to stop
executing this condition.

N

FCL TUTORIAL

t vill) Animator commands. As well as the ability to move individual objects using
their FCL conditions, 3D Construction Kit 2.0 has the ability to chain objects and
groups together to perform global movement commands on them. These are
covered in the advanced section.

mugging, or what to do when it all starts going horribly wrong!

i Ihi course of your adventures in programming, you will discover, from time to time,
il the conditions you have written are not reacting the way you expect them to. Of
e, you will blame the computer, you will jump and shout in frustration, you may
il [eal the need to pull a very big gun out and ask the computer “Do you fell lucky,

MIk?". Unfortunately, no matter how hard you try, you really cannot lay the blame at
lunl of you computer (not least of because it does not have any). You see,

Wputers are very pedantic, they only ever do EXACTLY what you tell them to do.

i liouble is that what you THINK you told the computer to do, and what the
huler KNOWS you told it to do, can quite often be two different things entirely.

Mo this happens, your program has a BUG. There are several strategies for

uving bugs from programs but, quite often, the simplest is to actually plan exactly

| you want to do. Although the temptation is to just sit down at the keyboard and
‘Wwriting, having at least a sketch plan of what you want to achieve is a great help.

18 next step is to look at what you've actually written and see if it really matches
Wil you wanted to write. If this fails, then the next step is to try to trace what is

paning. To do this we can use the debugger built into FCL. For information see the

lence section on DEBUG. If all else fails then it often helps to sit down, have a cup

M Balfee and forget what you are trying to do for a bit — its often a lot easier to find a

blilem on a rested, clear head.

FCL REFERENCE

11: Freescape Command Language Reference Guide |

11.1 Introduction

FCL is a procedural based language that is integrated within the Freescape
environment, allowing the user to control and animate the “Virtual World". Programs
written in FCL are known as CONDITIONS and can be used in six different contexts :

1) General Conditions. These are called every frame and can be used to
perform general purpose functions such as a countdown timer.

2) Local Conditions. These are similar to General conditions except they
are only called when the user is in the area that they are aftached to.

3) Object Conditions. These are only usually activated when some kind of
interaction with the object occurs ie when the user shoots it (left mouse
button), when the user activates it (right mouse button) or when the object
collides (either with the user or another object). However, it is possible to
have object conditions executed every frame by setting the ALW bit (see the
Edit Object Attributes section for more details).

4) Animators. Built in to 3D Construction Kit 2.0 is the ability to join objects
together and “animate” them. These pieces of animation are controlled by
chunks of FCL called Animators.

5) Initial Conditions. These are only run after a reset and are used to do
any one-off setting up of variables etc.

6) Procedures. These are useful general purpose chunks of code that you
may want to use in more than one place. A good example would be a routine
to display the score in a game every time it changes.

FCL is a compiled language that has error checking at both compile time and runtime.

FCL REFERENCE

11.2 Constants

A constant, in FCL, represents any absolute value stored in program, which never
changes. There are two forms of constants in FCL : numeric and strings (text)
constants.

i) Numeric constants. These are stored as signed 32 bit numbers and have
the range 2147483646 to +21 47483645 (the sign is optional when positive
numbers). They can be entered in one of two ways, either as straight forward
decimal or as hexadecimal (base 16) with a leading $.

ii) String constants. These are any arbitrary text string surrounded by double
quotes ().

11.3 Variables

\ariables in FCL are used to hold any quantity that may change. There are three sorts
of variable :

i) Numeric variables. There are 512 numeric variables in FCL, numbered VO-
V511. The first 30 variables, V0-V29 are known as the system variables and
are outlined below, in addition variable V255 is a the only variable not to
reset to zero when a reset is performed, and as such could be useful for
holding a running total, such as a hi-score.

76

T

FCL REFERENCE

Name Status Function

Vo R/W Viewpoint X position

VA RW Viewpoint ¥ position

V2 R/W Viewpoint Z position

Va R/W Viewpoint X rotation

V4 R/W Viewpoint ¥ rotation

V5 R/W Viewpoint Z rotation

V6 R Current Vehicle type

V7 R Current height (only valid in WALK mode)

Va8 R Current Area number

V9 R/W Number of last Area visited

V10 R/W Distance fallen above max ability

Vi1 RW Number of times shot

Vi2 RW Number of times crushed

Vi3 RW Number of last SENSOR to find you
(DETECT mode only)

Vi4 RW Number of times SENSED
(DETECT made only)

V15 R/w ASCII code of last key pressed

Vi6 RW Button status of last press (1- Left,
2 — Right, 3 — Both)

V17 RW Mouse X position at last press

V18 RW Mouse Y position at last press

V19 RW Frame counter for accurate timing

Vao R/W Player fire control (note 1)

V21 RW Number of shots fired

vag R/W Scaled Activate distance
(Default Activate distance * Current Scale)

Va3 R/W Ground colour + 256*Sky colour

Va4 R Current mouse button state (1- Left,
2 — Right, 3 — Both)

V25 R Current Mouse X

Vae R Current Mouse Y

V27 R Non-cleared mouse button flag (note 2)

vag RW Current area scale (0-31)

V29 RW Reserved — do not use

FCL REFERENCE

78

Variables marked as R/W can be read and written to (although it may not make
sense to modify some them), those marked as R should only be read and not
modified by the user.

Note 1 : Altering this variable allows control of the way the system reacts when
the user presses the left mouse button. Putting a 0 here will disable the players
ability to shoot completely. A 1 will enable shooting. Adding a 2 will draw lines
from the edge of the screen to the firing point, and adding a 4 enables a firing
sound. Finally, adding an 8 enables rapid fire, such that a continuous series of
shots will be sent as long as the player has the button down. The default value is
15, ie rapid firing with lines.

Mote 2: This is a store of the mouse button flags. It is set when either button is
pressed but it is not reset when they are released.

In addition to the above, there is a special variable called ME which is only valid
in abject conditions and which is set to the object number of the current object.

ii) String variables. Just like string constants, these are used to hold any little bits
of text you might need. There are 32 string variables in FCL number S0-S31.
Note that unlike numeric variables, string variables do not have a set amount of
space allocated for them, individually. The string buffer is 1024 bytes long and
this has to hold all the strings in the program, both variable and constant. In
addition to this, each individual string can only be a maximum of 250 characters
long.

iii) Arrays. Arrays in FCL are just like having a chain of numeric variables with the
same name. There are 16 arrays in FCL numbered A0-A15. As with strings, all
the arrays in your world are lumped inte one big memory pool and thus there is a
limited capacity. There are 256 longwords allocated for arrays. To use arrays,
you first dimension them using DEFARRAY

eq.
DEFARRAY(A1,10)

Each individual element of the array can then be accessed by placing an index
number in square brackets after the array name.

eg.
SETVAR(7,A1[6])

will set the 6 element of A1 to 7.

NB Array subscripts go from 0, not 1. So, in our previous example, the first
element of A1 is A1[0] and the last element is A1[9].

79

h ~ FCLREFERENCE FCL COMMANDS
| 11.4 Animators 12: FCL COMMAND REFERENCE GUIDE
' Built in to FCL, is the ability to join objects together and perform movement and
animation on them as if they were one object. Before an object can be animated it
. must be marked as moveable. This is done by setting the MOV flag in the EDIT 12.1 Format of Guide
I OBJECT ATTRIBUTES dialogue box. Any attempt o animate an object that is not Eachi b ; g .
| marked as moveable will have no effect. It is important to note that the grouping of ch instruction is listed alphabetically with the following layout :
{ objects together to animate them is entirely separate from the concept of GROUFS Mnemonic: 1 Shorthand: 2
[within the editor, which are essentially a static form for editing purposes. To animate a ;
group, each individual object must be made moveable. Animator Conditions (AC) are Type: 3
only executed when signalled from another FCL condition using the STARTANIM Parameters: 4
command. All commands in the AC are executed until the end of list is reached or until
| a redraw request is issued. If a redraw is issued then execution of AC is stopped and Description: 5
- the current program counter is saved. At the next frame, execution is resumed from Example: 6
| that point. If the end of the list is reached then the AC is marked as STOPPED and i
‘ can only be restarted with another STARTANIM. Flags: 7
| Notes: B
1 note 1: Although an AC may be initiated from conditions running in any area, it will not See Also: 9
‘ actually start until the user is actually in the area associated with that AC.]
| 1 Mnemonic field. This gives the name of the function along with the parameter
' note 2: Although most FGL commands are useable anywhere, there are certain count (if any).
i commands, such as INCLUDE, which are only accessible from with Animator 2 Shorthand field. Some instructions in FCL shortened versions which can be
Conditions. { typed in to the editor to speed up text entry. The next time you edit the
I’ condition these will be expanded to their full form.
note 3: It is important to note that objects grouped together in an Animator actasone & P %‘;2;':':: This gives the function fype that function |5 classified under.

|| big object for collision purposes. For instance, imagine that you have two small
i spheres, separated by gap, that are included in an Animator, and a narrow cube Variable Modifier : Any function which alters the value of a variable.
| between them. It would not be possible to move the two spheres, such that the cube

passes between them, without them colliding with the cube. This is because FCL Condition Statement : Any function that is used as part as a conditional
treats the Animator as one large cube that encloses all the objects within the Animator. section.
| To avoid this you would have to handle each sphere with a separate Animator. System Modifier : Any function that alters the way a part of the
! Freescape system works.
Loop Command : Any function used to repeat a section of code.
Execution Modifier : Any function that alters the execution of a FCL
condition.
| Graphics Command : Used for display various things onscreen.
L IO Command : Allows access to the external resources of the
|I . computer system you are running 3D Construction
] Kit 2.0 on.
Object Command : Special purpose function for altering an object’s
. | characteristics.
I Animator Command : Special purpose routines which are only valid

. '. inside Animator conditions.

| ._
|' 81

 FCL COMMANDS
4 Parameters field. Describes the parameters required by this routine and what
their type should be.

Description. What the function actually does.

Example. A small piece of FCL to demonstrate the function in action and a
short description of what would happen if the code was executed.

7 Flags. Describes what state the flags are left in after this function has run. If
it is blank then the flags are unaffected. *

8 Notes. Any warnings or further information you should be aware of.

9 See Also. Other FCL commands associated with this routine.

* Certain functions, notably most of the variable modifier r_:ommands. affect the flags.
This means that they can be used as part of a condition field:

IF ADVAR(4,V30)
THEN

INVIS(4)
ENDIF

This would make object 4 invisible IF the result of adding 4 to variable V30
was 0.

82

Mnemanic: ABS(P1,P2) Shorthand:
Type: Variable Modifier
Parameters: P1 — Numeric variable or constant

P2 — Numeric variable
Description: Set P2 to the absolute (ie positive value) of P1
Example: ABS(-10,V30) ; V30 is now set to 10
Flags: True if P2 is zero
Notes:
See Also:

12.2 Alphabetical listing of FCL functions

Mnemonic: ACTIVATED? Shorthand: ACT?
Type: Condition Statement
Parameters:
‘Description: Check to see if the current object was ACTIVATED
(ie clicked on with the right mouse button)
Example: IF ACTIVATED?
THEN
' INVIS(2)
ENDIF
Will set object two invisible if current object activated
Flags: TRUE if activated
otes: Only applicable to object conditions
See Also: COLLIDED?, SHOT?
‘Mnemonic: ACTIVERANGE(P1) Shorthand:
Type: System Modifier
Parameters: P1 — Numeric variable or constant representing range
Description: Set the players reach to P1, overriding the default setting.
Example: ACTIVERANGE(300)
Set the players reach to 300 units
Flags:
Notes: Overrides default setting
83

Shorthand: ADDS

Mnemonic: . ADDSTR(P1,P2)
Type: Variable Modifier
Parameters: P1 — String variable or constant
P2 — String variable
Description: Appends the string P1 to string P2 and alters the allocated
string space accordingly
Example: SETSTR(‘Test",S1)
ADDSTR(" String”,S2
PSTRING(S2,0,0)
“Test String” will be printed at location 0,0 on the screen
Flags:
Notes:
See Also: SETSTR, CLEARSTR
Mnemonic: ADDVAR(P1,P2) Shorthand: ADDV
Type: Variable Modifier
Parameters: P1 — numeric variable or constant
P2 — numeric variable
Description: Add variable P1 to variable P2
Example: SETVAR(5,V30)
ADDVAR(6,Y30)
V30 will now equal 11
Flags:
Notes:
See Also: SETVAR, SUBVAR, CLEARVAR
Mnemonic: AGAIN Shorthand:
Type: Loop Command
Ao h eat count and if greater than zero return
G i e rlevant LOOP
Example: SETVAR(0,V30)
LOOP(10)
84

~ FCLCOMMANDS
ADDVAR(1,V30)
AGAIN
V30 will be 10 at this point
Flags: TRUE if result is zero
Notes:
‘See Also: LOOP
" Mnemonic: AND Shorthand: &&

Type:

Parameters:
Description:

xample:

Flags:
Notes:
See Also:

inemonic:

Parameters:

: escription:
Example:

lags:

i

ee Also:

Condition Statement

Logically ANDs the results from the previous conditional
statement and the next one.

IF SHOT? AND VAREQ?(V30,2)
THEN

INVIS{(2)

ENDIF

Obiject 2 will be made invisible only if the current object was
shot and V30 is equal to 2

TRUE if both conditions are true
OR, NOT

ANDVAR(P1,P2)
Variable Modifier

Shorthand: ANDV

P1 — numeric variable or constant

P2 — numeric variable

Bitwise AND the contents of P1 with P2
SETVAR(255,V30)

ANDVAR($3t,V30)

V30 is now equal to 63

TRUE if result is zero

ORVAR, XORVAR, NEGVAR, NOTVAR

85

FCL COMMANDS

Mnemonic:
Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:
Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:

ANIMATED? (P1[,P2]) Shorthand:
Condition Statement
P1- Object number : Numeric variable or constant

P2- (Optional numeric) Area number : variable or constant

Set the condition flag if object number P1, optionally in area

number P2, is animated
IF ANIMATED?(4)
THEN

INVIS(4)
ENDIF

If object number 4 in the current area is animated it will be
made invisible

TRUE if object is animated

STARTANIM, STOPANIM

ANIMBRUSHACTIVE?(P1)
Condition Statement

Shorthand:

P1 — Animbrush number : numeric variable or constant
Check if animbrush number P1 is currently in use

IF ANIMBRUSHACTIVE?(4)

THEN

STOPANIMBRUSH(4)

ENDIF

If animbrush 4 is active it will be deactivated

TRUE if animbrush is active

STARTANIMBRUSH, STOPANIMBRUSH

AREAEXISTS?(P1)
Condition Statement

Shorthand:

P1 — Area number — numeric variable or constant

Check if area number P1 exists in the current world
database.

FCL COMMANDS

Example:

Flags:
Notes:

Mnemonic:

Type:
Parameters:

Description:

Example:

Flags:
Notes:

Mnemonic:
Type:

Parameters:

Description:

Example:

IF AREAEXISTS?(2)
THEN
AREANAME(S1,2)
ENDIF

If area number 2 exists then string S1 will be set to its
name

AREANAME(P1,P2) Shorthand:

Variable Modifier

P1 — Destn string variable

P2 — area number : numeric constant or variable
Store the name of area number P2 in the string P1
IF AREAEXISTS?(2)

THEN

AREANAME(S1,2)

ENDIF

If area number 2 exists then string S1 will be set to its
name

Trying to read the name of non-existent area will produce
a runtime error.

BITGLEAR?(P1,P2) Shorthand: BC?
Condition Statement

P1 — bit number to cheek (0-31) : numeric variable or
constant

P2 — variable to check bit in : numeric variable
Check if bit number P1 is clear in variable P2
IF BITCLEAR?(0,V20)

THEN

ORVAR($1,V20)

ENDIF

87

Flags:
Notes:

See Also:

Mnemonic:

Type:

Parameters:

Description:

Flags:
Notes:

See Also:

Mnemonic:
Type:

Parameters:
Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

If the players firing mode was disabled then enable it

' TRUE if bit in given variable was clear (ie 0)

The parameter P1 is logically ANDed with 31 to ensure it 18
within the correct range.
BITSET?, SETBIT, CLEARBIT

BITSET?(P1,P2) Shorthand: BS?
Condition Statement

P1 — bit number to check (0-31) : numeric variable or
constant

P2 — variable to check bit in : numeric variable
Check if bit number P1 is set in variable P2

IF BITSET?(1,V18)

THEN

PSTRING(“Pressed”,0,0)

ENDIF

If the left mouse button is pressed then the message
“Pressed” is displayed in the top left hand corner of the
screen

TRUE if bit in given variable was set (ie 1)

The parameter P1 is logically ANDed with 31 1o ensure it I8
within the correct range.

BITCLEAR?, SETBIT, CLEARBIT

BORDER(P1) Shorthand:
System Modifier

P1 - Border number — numeric variable or constant
Display the border number P1

BORDER(1)

Display border number 1

Ignores non-existent border numbers
LOADSCREEN

BOX(P1,P2,P3,P4,P5) Shorthand:

Graphics Command

P1 — X1 posn : numeric variable or constant
P2 — Y1 Posn : numeric variable or constant
P3 — X2 posn : numeric variable or constant
P4 — Y2 Posn : numeric variable or constant
P5 — Colour : numeric variable or constant

Draw a filled box whose top left hand corner is X1,Y1 and
whose bottom right hand corner is X2,Y2 in colour P5

BOX(0,0,319,199.,5)
Wil fill the entire screen with colour 5

FRAME, LINE, CIRCLE, DISC

BRUSH (P1,P2,P3) Shorthand:
Graphics Command

P1 — Brush number : numeric variable or constant
P2 — X coord ; numeric variable or constant

P3 - Y coord : numeric variable or constant

Plot brush number P1 at the screen location P2,P3
BRUSH(0,10,15)

Will plot brush 0 at location 10,15

The coords are of the top left hand corner of the brush.
Non-existent brush numbers are ignored.

CHAR(P1,P2,P3) Shorthand:
Variable Modifier

P1 — source string variable or constant

P2 — Character position : numeric variable or constant
P3 - ASCII value : numeric variable

Find the ASCII value of the character in the position given
by P2 and save it in P3

88

89

Example: CHAR(*ABCD",1,V30)
V30 will be set to $41 (*A”)

Flags:

Notes:

See Also: MIDSTR, SETSTR

Mnemonic: CIRCLE(P1,P2,P3,P4) Shorthand:

Type: Graphics Command

Parameters: P1 — X Coord of centre: numeric variable or constant
P2 — Y Coord of centre: numeric variable or constant
P3 — radius : numeric variable or constant
P4 — colour : numeric variable or constant

Description: Draw a circle whose centre is at P1,P2 of radius P3in
colour P4

Example: CIRCLE(100,100,10,4)
Will draw a circle at coords (100,100} of radius 10 in
colour 4

Flags:

Notes: In the current version, circles which are drawn outside the
bounds of the screen, are not clipped properly.

See Also: FRAME, LINE, BOX, DISC

Mnemonic: CLEARARRAY(P1) Shorthand: CLRARY

Type: Variable Modifier

Parameters: P1 — Array variable

Description: Set every of the array pointed to by P1 to zero

Example: CLEARARRAY(A2)
All the elements in array A2 will be set to zero

Flags:

Notes:

See Also: DEFARRAY, UNDEFARRAY

Mnemonic: CLEARBIT(P1,P2) Shorthand: CLRB

Type: Variable Modifier

90

i

; it
¥ e anie Rl R
-, F _ et
e i By SR
- e i e

Parameters:

Description:

xample:

Flags:
Notes:

g.:- e Also:

Mnemonic:
Type:
.'nrarneters:
Description:
Example:
Flags:

Notes:
iee Also:

inemonic:

VYpe:

arameters:
)escription:
xample:
lags:

otes:
ee Also:

nemonic:

P1 — Bit number to clear : numeric variable or constant

P2 — Destn Numeric variable

Clear bit number P1 in variable P2

SETVAR(255,V30)

CLEARBIT(2,V30)

V30 will be set to 251

TRUE if the result is zero

The bit number will be ANDed with 31 to ensure it is range
TOGBIT, SETBIT, BITCLEAR?, BITSET?

CLEARSCREEN
Graphics Command

Shorthand: CLS

Clear the screen

Clears the entire screen, including any border that was
loaded

CLEARSTR(P1[,P2))
Variable Modifier
P1 - Start string variable

Shorthand:

P2 - Optional stop string variable

Set the lengths of all strings between P1 and P2 to zero. If
P2 is not specified then only P1 is modified.

CLEARSTR(S3,56)
$3,54,55 and S6 will all be set to length zero
SETSTR

CLEARVAR(P1[,P2]) Shorthand: CLRVAR

91

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:
Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
coL?

Type:

Parameters:
Description:

Example:

Flags:

Variable Modifier
P1 - Start numeric variable
P2 — Optional stop variable

Set all the variables between P1 and P2 to zero. If P2 is not
specified then only P1 is cleared.

CLEARVAR(V30, V35)
\/30-V35 will be setto 0
TRUE if the result is zero

SETVAR, ADDVAR, SUBVAR
CLIMBABILITY(P1) Shorthand:

Systemn Madifier

P1 — climb ability : numeric variable or constant
Set the climb ability of the player to P1

CLIMABILITY(10)
The climb ability of the player is set to 10 units

FALLABILITY

COLLIDED? Shorthand:

Condition Statement

Check the collision flag for the current object.
IF COLLIDED?

THEN

MAKEWIRE(7)

ENDIF

If the current object has collided then make object number
wireframe

TRUE if object collided
Only valid on objects.

92

See Also:

‘Mnemonic:

Parameters:

Description:
[Example:

Flags:
i: otes:

See Also:

Mnemonic:
lype:
Parameters:

Description:

e mple:
4 gs:

-5 L)

see Also:
inemonic:
_pB:
Parameters:
Jescription:
Example:

ACTIVATED?, SHOT?

COS(P1,P2)
Variable Modifier

P1 — angle in degrees (0-359) : numeric variable or
canstant

P2 — Destn variable
Calculate the CoSine of P1 and store it in P2.

Shorthand:

TRUE if result is zero

Since all maths in FCL is integer, the actual value stored in
P2 is Cos(P1)"16384

SIN

DATE(P1,P2,P3)
10 Command

P1 — Day variable
P2 — Month variable
P3 — Year variable

Get the date from the system and put the day in P1, the
menth in P2 and the year in P3.

DATE(V30,V31,V32)

Shorthand:

TIME

DEC(P1) Shorthand:
Variable Modifier

P1 — Variable to decrement

Decrement the variable P1
SETVAR(2,V30)

DEC(V30)

V30 now equals 1

TRUE if result is zero

93

i o o i
s e
4 e E S 2
FCL COMMANDS
R i -
g

Notes:
See Also:

Mnemonic:

Type:
Parameters:

Description:
Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:
Parameters:

INC
DEFARRAY(P1,P2) Shorthand: DIM
Variable Modifier

P1 — Array to define

P2 — Size of required array

Set the array P1 to have 10 elements
DEFARRAY(A1,10)

Array A1 has 10 elements

UNDEFARRAY, CLEARARRAY
DEFVIS?(P1[,P2]) Shorthand:

Condition Statement

P1 — Object number : Numeric variable or constant

P2 — Optional area number : Numeric variable or constant

Check if object number P1 in area P2 is set to visible as its
default. If P2 is not specified the object is assumed to be in
the current area.

IF DEFVIS?(4)
THEN
INVIS(4)
ENDIF

If object 4 in the current area is set to visible as its default,
then make it invisible

TRUE if object default is visible

VIS?

DELAY(P1) Shorthand:
System Modifier

P1 — Frame count to delay : numeric variable or constant

94

FCL COMMANDS

I Description:

| xample:
Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:

Description:

Example:

Flags:
Notes:

See Also:
"_Z‘ emonic:
Type:

Parameters:

Description:

Example:

Pause all activity for P1 frames

DESTROY(P1[,P2])
Object Command

Shorthand:

P1 — Object number : numeric variable or constant
P2 — Optional area number : numeric variable or constant

Mark object number P1, in area P2, as destroyed. If P2 is
not specified then object is assumed to be in current area.

IF SOLID(4,2)?
THEN
DESTROY(4,2)
ENDIF

If object number 4 in area 2 is currently solid then mark it
as destroyed. L

DESTROYED?, UNDESTROY

DESTROYED?(P1[,P2]) Shorthand: DEST?
Condition Statement

P1 — Object number : numeric constant or variable

P2 - Optional area number : numeric constant or variable

Check if object number P1 in area P2 has been destroyed.
If P2 is omitted then the current area is assumed.

IF DESTROYED?(2,1)
THEN

GOTO (1)

ENDIF

If object 2 in area 1 is destroyed then goto entrance 1 in
this area.

95

Flags:

Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:
Example:
Flags:
Notes:

See Also:

Mnemonic:
Type:

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:
Parameters:

TRUE if object destroyed

DESTROY, UNDESTROY

DISABLE
System Modifier

Shorthand:

Disable all player movement

ENABLE
DISC(P1,P2,P3,P4) Shorthand:
Graphics Command

P1 — X centre : numeric variable or constant
P2 — Y centre : numeric variable or constant
P3 — Radius : numeric variable or constant
P4 — Colour : numeric variable or constant

Draw a filled circle at coord P1,P2 with a radius of P3 in
colour P4

FOR (V30,10,50,10)
DISC(100,100,V30,174)
NEXT

Will fill an expanding disc.

BOX, CIRCLE, FRAME, LINE

DISTANCE(P1,P2,P3,P4,P5,P6,P7)
Variable Modifier

P1 — Destination variable

P2 — X1 coord : numeric variable or constant

Shorthand:

96

‘Description:

‘Example:

Flags:
'Notes:
See Also:

‘Mnemonic:
Type:

Parameters:

Description:

‘Example:

Flags:
otes:
‘See Also:

‘Mnemonic:

Type:
F arameters:

Description:

Example:
Flags:

P3 - Y1 coord : numeric variable or constant
P4 — Z1 coord : numeric variable or constant
P5 — X2 coord : numeric variable or constant
P6 — Y2 coord : numeric variable or constant
P7 — Z2 coord : numeric variable or constant ¢

Calculate the distance between coords X1,Y1,Z1 and
X2,Y2,Z2 and save it in P1

DISTANCE(V30,100,100,100,75,64,800)

The distance is calculated between 100,100,100 and
75,64,800 and put into V30

TRUE if the result is zero

DIV(P1,P2) Shorthand:
Variable Modifier

P1 — Divisor : numeric constant or variable
P2 — Dividend : numeric constant or variable
Divide P2 by P1 and store the integer result in P2
SETVAR(10,V30)

SETVAR(5,V31)

DIV(V31,V30)

V30 will be setto 2

TRUE if result is zero

Result is rounded down

MULT

DRAWONLY
System Modifier

Shorthand:

Forces a redraw of the Freescape view without any
recalculation of the 3D view.

97

Notes:

See Also:

Mnemonic:
Type:
Parameters:
Description:

Example:

Flags:
Notes:

See Also:

Mnemonic:
Type:
Parameters:
Description:
Example:
Flags:
Notes:

See Also:

Mnemonic:

Type:

Any changes in object display, such as fade value or colour
changes are made, so changes in object position won't be
displayed but a change in the colour of a face will.

REDRAW Example:
Flags:
ELSE Shorthand: Notes:
Condition Statement
See Also:
If the IF command associated with this ELSE was false then
continue processing from here until the associated ENDIF, L _
otherwise simply skip to the associated ENDIF. ‘Mnemonic:
VIS(2) Type:
IF INVIS?(2) THEN Parameters:
NOP Description:
ELSE .
Example:
MAKEWIRE(2) ;
Flags:
ENDIF g
Notes:
If object 2 is made wireframe)
; See Also:
IF ENDIF blocks are nested, so it important to remember .
which ELSE is associated with which IF. The editor helps Mnemonic:
by automatically indenting IF...ENDIF blocks. Type:
IF, THEN, ENDIF B etors:
: Description:
ENABLE Shorthand:
System Modifier _
Example:
Enables player movement
DISABLE
“lags:
END Shorthand:
otes:
Execution Modifier

- 'arameters:
Description:

Unconditional stops execution of the condition.

If use in an ANIMATOR condition, execution will
recommence at the next instruction after the END, in the
next frame.

ENDGAME _
Execution Modifier

Shorthand:

Forces the Freescape kernel to register the end of the
game at the next frame update and perform a reset.

ENDIF Shorthand: FI
Condition Statement

Marks the end of a conditional block. The next instruction
after this command will be processed, regardless of the
setting of the flags.

VIS(4)

IF INVIS?(4)

THEN

VIS(4)

ENDIF

INVIS(4)

Object four will be made invisible

As conditional blocks can be nested, it is important to keep
track of which ENDIF is associated with which IF.

98

99

l
b ll|
| ‘

|
It

|
'l

Mnemonic:

Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

IF, THEN, ELSE
EXECUTE(P1[,P2]) Shorthand: EX

Execution Modifier :

P1 — object number : numeric variable or constant

P2 — optional area number : numeric variable or constant

Execute the object condition associated with object P1, in
area P2. If P2 is omitted then the object is assumed to be
in the current area

IF VIS2(7,3)
THEN
EXECUTE(7,3)
ENDIF

If object number 7, in area 3, is visible then its conditions will
be executed

PROC, RETURN
FADE? (P1[,P2]) Shorthand:

Condition Statement

P1 — object number : numeric variable or constant

P2 — optional area number: numeric variable or constant

Check if object P1 in area P2 has faded. If P2 is omitted
then object is assumed to be in the current area.

IF FADE?(2)

THEN

INVIS(2)

ENDIF

If object 2 has finished fading then make it invisible
TRUE if object has faded

FADEIN?, FADEOUT?, FADEBOUNCE?

100

'Mnemonic:

Parameters:

Description:

Example:

Flags:
Notes:

g Xe Also:

Mnemonic:
Type:

Parameters:

Description:

Example:

Flags:
See Also:

inemonic:
_I".L' ne:

larameters:

Description:
ixample:

FADEBOUNCE(P1[,P2]) Shorthand:

Object Command

P1 - object number : numeric variable or constant

P2 — optional area number : numeric variable or constant
Set object P1 to fade in and out repeatedly.
SETVAR(4,V56)

FADEBOUNCE(V56)

Object 4 will start to fade

FADEIN, FADEOUT, FADESTOP

FADEBOUNCE?(P1[,P2]) Shorthand:

Condition Statement

P1 — Object number : numeric variable or constant

P2 — Optional area number : numeric variable or constant
Check if object P1 in area P2 is fading in bounce mode
IF FADEBOUNCE?(3)

THEN

FADESTOP(3)

ENDIF

Object 3 will stop fading

TRUE if object is in bouncing fade mode

FADE?, FADEIN?, FADEQOUT?

FADEIN(P1[,P2])
Object Command
P1 — object number : numeric variable or constant

Shorthand:

P2 — optional area number : numeric variable or constant
Set object P1 to fade in and then stop.
SETVAR(4,V56)

101

———

— =

Flags:
Notes:
See Also:

Mnemanic:

Type:
Parameters:

Description:
Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:
Parameters:

Description:
Example:

Flags:
Notes:
See Also:

ai i i

FADEIN(V56)

Inemonic:
Object 4 will start to fade in be:
__.:; rameters:
FADEBOUNCE, FADEOUT, FADESTOP Jescription:
sxample:
FADEIN?(P1[,P2]) Shorthand:
Condition Statement
P1 — Object number : numeric variable or constant
P2 — Optional area number : numeric variable or constant
Check if object P1 in area P2 is fading in. lags:
IF FADEIN?(3) -
THEN ee Also:
DELAY(2)
=ielF Inemonic:
If object 3 is fading in then delay the program for two B
frames
TRUE if object is fading in paeters:
FADE?, FADEOUT?, FADEBOUNCE? e rition:
xample:
FADEOUT(P1[,P2]) Shorthand:
Object Command. '
P1 — object number : numeric variable or constant
P2 — optional area number : numeric variable or constant
Set object P1 to fade out r.
SETVAR(4,V58)
FADEOQUT(V56) -
Object 4 will start to fade out. Btos:
ee Also:
FADEIN, FADEBOUNCE, FADESTOP

lnemonic:

FADEOUT?(P1[,P2]) Shorthand:
Condition Statement

P1 — Object number : numeric variable or constant

P2 — Optional area number : numeric variable or constant
Check if object P1 in area P2 is fading out

IF NOT FADEOUT?(7,3)

THEN

FADEOUT(7,3)

ENDIF

Object 7 in area 33 will fade out

TRUE if object is fading out

FADE?, FADEIN?, FADEBOUNCE?
FADESTOP(P1[,P2])

Object Command
P1 — object number : numeric variable or constant

Shorthand:

P2 — area number : numeric variable or constant

Stop object P1 in area P2 from fading. If P2 is omitted then
the object is assumed to be in the current area.

IF FADEIN?(4)

OR FADEQUT?(4)

OR FADEBOUNCE?(4)

THEN

FADESTOP(4)

ENDIF

If object four is undergoing any kind of fade then stop it.

FADEIN, FADEOUT, FADEBOUNCE

FALLABILITY(P1)
System Modifier

Shorthand:

102

103

-\sm.

BRI

i
e

o
i

Parameters: P1 — Height — numeric variable or constant Flags:
Description: Set the fall ability of the player to P1 Notes:
Example: FALLABILITY(100) See Also: FOPEN, FCLOSE,FEXISTS?, FGETS, FPUT, FPUTS
Set the player's fall ability to 100 i
el i o Mnemonic: FGETS(P1) Shorthand:

e Type: |0 Command
g CLIMBABILITY Parameters: P1 — destn string variable
e Description: Read in a string from the currently opened file and store it P1

Example: see FOPEN for example
Mnemonic: FEXISTS?(P1) Shorthand: i * : for examp
Type: Condition Statement/IO Command)

- 1 —fil string variable or constant]
e Zh c!:: zﬂa:':ﬁ " :g See Also: FOPEN, FCLOSE,FEXISTS?, FGET, FPUT, FPUTS
Description: eck if a file exists.
- FOPEN for example _
N o - Mnemonic: FOPEN(P1,P2) Shorthand:
Flags: -
Notes: If no path or drive are specified then it will assume the current e 1o Gornrnand . |
directory Parameters: P1 —filename string variable or constant

See Also: FOPEN, FEXISTS?, FGET, FGETS, FPUT, FPUTS P2 — Read/write flag : numeric variable or constant

Description: Open the file pointed to by P1. P2 defines the access mode —
Mnemonic: FCLOSE Shorthand: | O=read, 1 =write.

0c d Example: IF FEXISTS?(*"HISCORES”)
. mman
e ; THEN
S FOPEN(*HISCORES",0)
Description: Close the currently opened file . '
: FOPEN for example
Example: see pl FEETRS)
i FOLOSE
Notes:
LSE
See Also: FOPEN, FEXISTS?, FGET, FGETS, FPUT, FPUTS ELS
PSTRING(“Hiscores not found”,0,160)
ENDIF
: FGET(P1 Shorthand:
e i If the file "HISCORES" exists then it opened and a variable
Type: IO Command and a string are read from it, otherwise a string is displayed
Parameters: P1 — numeric variable on the screen
Description: Read a numerical value from the currently open file and store lags: TRUE if successful
itin P1 Bies:
Example: see FOPEN for example e Also: FCLOSE FEXISTS?, FGET, FGETS, FPUT, FPUTS
104

105

—————

Mnemonic:

Type:
Parameters:

Description:

Example:

See Also:

Mnemonic:

Type:
Parameters:

| ‘ Description:
Example:
Flags:
Notes:
See Also:

Mnemonic:

FOR(P1,P2,P3[,P4]) Shorthand:

Loop Command

P1 — loop counter variable

P2 — start value : numeric variable or constant
P3 — end value : numeric variable or constant

P4 — optional increment/decrement value : nume ric
constant or variable

Repeatedly execute the code between this FOR and its
associated NEXT. When the FOR is executed P1 is set to
P2. The code between the FOR and the NEXT is then
executed. When the NEXT is reached 1, or P4 if specified,
is added to P1. If P1 is not equal to P3 then execution
jumps back to the FOR and execution continues.

SETVAR(0,V30)
FOR (v31,10,0,-2)
ADDVAR(1,V30)

NEXT
V30 will equal 5.

Unlike LOOP ... AGAIN, FOR ... NEXT corrupts the loop

variable, so, for instance, in the example above V31 will be

equal to 0 when the final NEXT is executed
NEXT
FPUT(P1}) Shorthand:

|0 Command

P41 — Value to write : Numeric variable or constant
Write a number to the currently opened file.

FOPEN, FCLOSE,FEXISTS?, FGET, FGETS, FPUTS

FPUTS(P1) Shorthand:

pe:

Example:
Flags:
Notes:
See Also:

Mnemonic:

Type:

Unemonic:

ype:

‘arameters:

Jescription:
xample:

:l: gs:
lotes:
ee Also:

Parameters:
Description:

Parameters:

10 Command
P1 — output string variable or constant
Write the string P1 to the currently opened file.

FOPEN, FCLOSE,FEXISTS?, FGET, FGETS, FPUT

FRAME(P1,P2,P3,P4,P5) Shorthand:

Graphics Command

P1 — X1 coord : numeric variable or constant

P2 — Y1 coord : numeric variable or constant

P3 — X2 coord : numeric variable or constant

P4 — Y2 coord : numeric variable or constant

P5 — Colour to draw in : numeric variable or constant
Draw a box (not filled) from P1,P2 to P3,P4 in colour P5.
FRAME(0,0,319,199,2)

Will surround the entire screen in colour 2

BOX, CIRCLE, DISC, LINE

FROMASCII(P1,P2)

Variable Modifier
P1 — source string variable or constant

Shorthand:

P2 — destn numeric variable

Store the numeric value of string P1 in variable P2
FROMASCII(“100",V30)

V30 will now be set to 100

TOASCII

Mnemonic:
Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:

GETFADE(P1,P2,P3) Shorthand:

Object Command

P1 - destn variable

P2 — Object number : numeric variable or constant
P3 — Area number : numeric variable or constant

Get the current fade value of object number P2 in area I_=1
and put it into P1. If P2 is omitted then the current area is
assumed

GETFADE(V30,2)
Sets V30 to the fade value of object 2

SETFADE

GETFADER(P1,P2,P3) Shorthand:

Object Command

P1 — Destn numeric variable

P2 — User fade number : numeric variable or constant
P3 — Line of fade pattern : numeric variable or constant

Get the current bitmask for line P3 in user fade number P2

and put it in variable P1.
GETFADER(V30,12,2)
V30 will be set to the value of line 2 in user fade 12.

The user fades start at 10 and end at 15.
SETFADER
GETOBJCOL(P1,P2,P3[,P4]) Shorthand:
Object Gommand

P1 — Destn variable

P2 — Facet number : numeric variable or constant
P3 — Object number : numeric variable or constant

P4 — Optional area number : numeric variable or constant

108

s S

: Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:
Parameters:

Description:

, xample:

Flags:
Notes:
See Also:

Mnemonic:

Parameters:

Description:

Example:

Set P1 to the colour of facet number P2 in object P3, which

is area P4. If O4 is omitted then the current area is
assumed

IF VIS?(4,2)
THEN GETOBJCOL(V30,1,4,2)
V30 is set to the colour of facet 1 of object 4 in area 2

SETOBJCOL

GETPIXEL(P1,P2,P3) Shorthand:
Object Command

P1 — X coord : numeric variable or constant
P2 — Y coord : numeric variable or constant
P3 — Destn variable

Get the colour of the pixel at location P1,P2 and put it in
P3.

GETPIXEL(10,10,V43)

V43 will be set to the colour of the pixel at location 10,10 on
the screen

SETPIXEL

GETXPOS(P1,P2[,P3]) Shorthand:

Object Command

P1 — Destn variable

P2 — Object number : numeric variable or constant

P3 — Optional area number : numeric variable or constant

Get X position of abject number P2 in area P3 and store in
P1. If P3 is omitted then the current area is assumed.

GETXPOS(V30,2)
V30 is set to the world X coord of object 2

109

Notes:
See Also:

Mnemonic:

Type:

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:

SETXPOS

GETXSIZE (P1,P2[,P3]) Shorthand:

Object Command

P1 — Destn variable

P2 — Object number : numeric variable or constant

P3 — Optional area number : numeric variable or constant

Get X size of object number P2 in area P3 and store in P1.

If P3 is omitted then the current area is assumed.
GETXSIZE(V34,4,1)
V34 is set to the size in the X axis of object 4 in area 1

SETXSIZE

GETYPOS(P1,P2[,P3]) Shorthand:

Object Command

P1 — Destn variable

P2 — Object number : numeric variable or constant

P3 — Optional area number : numeric variable or constant

Get Y position of object number P2 in area P3 and store in
P1. If P3 is omitted then the current area is assumed.

GETYPOS(V30,2)
V30 is set to the world Y coord of object 2

SETYPOS

GETYSIZE (P1,P2[,P3]) Shorthand:

Object Command

P1 — Destn variable

P2 — Object number : numeric variable or constant

110

Description:

Example:

., lags:
Notes:
See Also:

Mnemonic:

Type:

Parameters:

Description:

Example:

Flags:
Notes:

See Also:

Mnemonic:

ipe:
Parameters:

Description:
..'.'.- (a I'I'Ipl&:
Flags:

Notes:
See Also:

P3 — Optional area number : numeric variable or constant

Get Y size of abject number P2 in area P3 and store in P1.
If P3 is omitted then the current area is assumed.

GETYSIZE(V34,4,1)
V34 is set to the size in the Y axis of object 4 in area 1

SETYSIZE

GETZPOS(P1,P2[,P3]) Shorthand:

Object Command

P1 — Destn variable

P2 — Object number : numeric variable or constant

P3 — Optional area number : numeric variable or constant

Get Z position of object number P2 in area P3 and store in
P1. If P3 is omitted then the current area is assumed.

GETZPOS(V30,2)
V30 is set to the world Z coord of object 2

SETZPOS

GETZSIZE (P1,P2[,P3]) Shorthand:

Object Command

P1 - Destn variable

P2 — Object number : numeric variable or constant

P3 — Optional area number : numeric variable or constant

Get Z size of object number P2 in area P3 and store in P1.
If P3 is omitted then the current area is assumed.

GETZSIZE(V34,4,1)
V34 is set to the size in the Z axis of object 4 in area 1

SETYSIZE

111

Mnemonic:
Type:
Parameters:
Description:

Example:
Flags:
Notes:
See Also:

Mnemonic:

Type:
Parameters:

Description:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:
Example:

GOBACK
System Modifier

Shorthand:

Move the player back to the last visited area at the last
position in that area.

GOTO
GOTO(P1[,P2]) Shorthand:

System Modifier

P1 — entrance number : numeric variable or constant

P2 — optional area number : numeric variable or constant

Move the player to entrance P1 in area P2: If P2 is omitted
then the current area is assumed

IF SHOT?
THEN
GOTO(?2)
ENDIF

If the current object has been shot then go to entrance 2 in
the current area

GOBACK
GOTOCAMERA(P1) Shorthand:

System Modifier

P1 — camera number : numeric variable or constant
Move the player to the current position of Camera P1
GOTOCAMERA(2)

The players position will be moved to camera 2

112

‘_lags:
See Also:

Mnemonic:
.- pe:

Parameters:
Description:

Example:
i.-:xs
Notes:
ee Also:

5'! nemonic:
Type:
Parameters:

Jescription:

Example:

Notes:
iee Also:

inemonic:
arameters:
escription:

ixample:

'.-.': gs:
lotes:

IF Shorthand:
Condition Statement

Marks the beginning of a conditional block and clears the
condition flags ready for a conditional statement.

THEN, ELSE, ENDIF

INC{P1) Shorthand:
Variable Modifier

P1 — numeric variable

Adds one to P1

SETVAR(0,V30)

INC{V30)

V30 will equal 1

TRUE if result is zero

DEC

INCLUDE(P1) Shorthand:

Animator Command

P1 — object number : numeric variable or constant

Add object P1 to list of object affected by this animator.
INCLUDE(2)

Object number 2 will now be included in this animation

Only valid in ANIMATOR Conditions

113

FCLCOMMANDS

See Also:

Mnemonic:

Type:
Parameters:

Description:
Example:

Flags:
Motes:
See Also:

Mnemonic:

Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemeonic:

Type:

Parameters:

REMOVED, ANIMATED?
INDEXSTR(P1,P2) Shorthand:

Variable Modifier

P1 — source string number : numeric variable or constant
P2 — Destn string variable

Store string number P1 in string P2

SETSTR{"Hello",$1)

SETSTR("World",S2)

SETVAR(2,V30)

INDESTR(V30,51)

S1 will be set to “World”

INSCOL(P1,P2,P3) Shorthand:

Graphics Command

P1 — instrument number : numeric variable or constant
P2 — Foreground colour : numeric variable or constant
P3 — Background colour : numeric variable or constant

Set the foreground colour to P1 and the background colour
to P2 for instrument P3

INSCOL(1,4,7)

The foreground colour of instrument 1 is set to colour 4 and
the background colour is set to 7

INSDISABLE(P1) Shorthand:
Graphics Command

P1 — Instrument number ; numeric variable or constant

|. escription:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:
Description:

Example:

lags:

Noles:
e Also:
inemonic:

-. De

_rameters:

-

Description:

Flags:
.'_‘_l Bs:
ee Also:

Mnemonic:

Parameters:

Disable instrument P1
INSDISABLE(4)
Instrument number 4 will no longer be updated

INSENABLE

INSENABLE(P1)
Graphics, Command

Shorthand:

P1 — Instrument number : numeric variable or constant
Disable instrument number P1

INSENABLE(2)

Instrument 2 will be updated

INSDISABLE
INTAN?(P1[,P2]) Shorthand:

Condition Statement

P1 — Object number : numeric variable or constant
P2 — Area number : numeric variable or constant
Check if object P1 in area P2 is intangible

TAN?, MAKETAN, MAKEINTAN

INVIS(P1[,P2])
Object Command
P1 — Object number : numeric variable or constant

Shorthand:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:
Description:

Example:

P2 - Optional area number : numeric variable or constant

Set the object attributes for object P1 in area P2 to make it
invisible. If P2 is omitted then the current area is assumed.

IF SHOT?
THEN
INVIS(1,4)
ENDIF

If the current object has been shot then make object 1 in
area 4 invisible

VIS, VIS?, INVIS?

INVIS?(P1[,P2]) Shorthand:
P1 — Object number : numeric variable or constant
P2 - Optional area number : numeric variable or constant

Set the object attributes for object P1 in area P2 to make it
invisible. If P2 is omitted then the current area is assumed.

IF INVIS?(7)
THEN
MOVE(20,0,0)
ENDIF

If object 7 is invisible then move the animation list set in
this animator

TRUE if object is invisible
INVIS, VIS, VIS?

JUMP(:P1) Shorthand:
Execution Modifier

P1 — label number

Transfer execution fo the label :P1

IF SHOT?

116

Flags:
Notes:
See Also:

Mnemonic:
pe:

i’aramatars:

Description:

Example:

Flags:

Notes:

See Also:

‘Mnemonic:
pe:

|

Parameters:

Description:

‘Example:

THEN
JUMP (:1)
ENDIF
INVIS(2)

1 INVIS(3)

Will only make object 2 invisible if the current object was
shot. Object 3 will always be made invisible

LEFTSTR(P1,P2,P3)
Variable Modifier
P1 — Source string variable or constant

Shorthand:

P2 — Count : numeric constant or variable

P3 - Destination string variable

Set the string P3 to be equal to the first P2 characters in P1
SETSTR(“Hello World",S1)

LEFTSTR(S1,5,52)

S2 will be set to “Hello”

RIGHTSTR, MIDSTR

LENSTR(P1,P2)

Variable Modifier

P1 — source string variable

Shorthand:

P2 — destn numeric variable

Calculate the length of the string P1 and save it in variable
P2

SETSTR("Hello World",51)
LENSTR(S1,V30)
V30 will be setto 11

117

-

S e e

Flags:

Notes:
See Also:

Mnemonic:

Type:

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

1ype:

Parameters:

LIMIT(P1,P2,P3,P4) Shorthand: Description:
Graphics Command
P1 — Destn numeric variable

P2 — Source numeric variable or constant Example:
P3 — Min : numeric variable or constant
P4 — Max : numeric variable or constant Flags:
Limit the value of P2 to between P3 and P4 and store the Notes:
result in P1.

See Also:
SETVAR(10,V31) 3

LIMIT(V30,V31,0,8)
V30 will be set to 8.
TRUE if result is zero

Mnemonic:

Parameters:
Description:
MAX, MIN L
Example:
LINE(P1,P2,P3,P4,P5) Shorthand:
Graphics Command
P1 = X1 coord : numeric variable or constant
P2 — Y1 coord : numeric variable or constant

Flags:
Notes:
See Also:
P3 — X2 coord : numeric variable or constant
Mnemonic:
Type:
Parameters:

P4 — ¥2 coord : numeric variable or constant
P5 — Line colour : numeric variable or constant

Draw a line on the screen between (P1,P2) and (P3,P4) in
colour P5

LINE(0,0,319,0,23) Description:

Will draw a line in colour 23 across the very top line of the

screen
Example:

Flags:

BOX, CIRCLE, DISC, FRAME

LOADSCREEN(P1,P2) Shorthand:

10 Command/Graphics Command

P1 —filename to load : string variable or constant
P2 — Display mode : numeric variable or constant

Load and display the screen whose file specification is P1.
P2 is the display mode : 0 Just display picture, do not put
3D window up

1 Display picture with 3D window
LOADSCREEN("PANEL.IFF",0)
Will load and display the file called PANEL.IFF

BORDER

LOADWORLD(P1) Shorthand:

IO Command/System Moadifier

P1 —filename of world : string variable or constant
Load the world data file called P1.
LOADWORLD("my_world.3wd")

Will load the worlds datefile called MY _WORLD.3WD

Will overwrite any existing data in memory.

LOCK(P1[,P2]) Shorthand:

Object Command

P1 — object number : numeric variable or constant

P2 — optional area number : numeric variable or constant

Lock object P1 in area P2 against being used in animation
commands. If P2 is not specified then the current area is
assumed

LOCK(4)
Object 4 will no longer be animated

118

119

See Also:

Mnemonic:

Type:

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:
Parameters:

Description:

LOCKED?, UNLOCK, UNLOCKED?

LOCKED?(P1[,P2]) Shorthand:

Flags:
Condition Statement

Notes:

P1 — Object number : numeric variable or constant

See Also:
P2 — Optional area number : numeric variable or constant '
Check if object P1 in area P2 is locked against animation. If . 4
P2 is not specified then the current area is assumed. p nemonic:
IF LOCKED?(3) pe:
THEN Parameters:
UNLOCK(3) Description:
ENDIF
TRUE if object is locked against animation Example:

LOCKED, UNLOCK, UNLOCKED?

LOCKONTO(P1,P2,P3[,P4]) Shorthand:
System Modifier

P1 — view direction : numeric variable or constant
P2 - view distance : numeric variable or constant

P3 — Object number to lock to : numeric variable or
constant

P4 — optional area number : numeric variable or constant

Move the player's viewpoint such that the centre of object
P3, in area P4, is in the centre of the screen and the
players eye position is facing the direction specified by P1
at the distance specified by P2. If P4 is not specified then
current area is assumed.

The view direction, P1, takes the following values :

5 — Below
LOCKONTO(1,500,2)

Maves the player viewpoint to face object 2 from the West
at a distance of 500 units

LOOP(P1) Shorthand:
Loop Command
P1 — Repeat count : numeric constant or variable

Execute the code between this LOOP and its associated
AGAIN command P1 times.

SETVAR(0,V30)

LOQP(10)

ADDVAR(3,V30)

AGAIN

V30 will have the value of 30

Unlike FOR...NEXT, once the LOOP command has been
executed then the parameter P1 is no longer needed, so if
it is a variable, it may be re-used inside the loop, and if it is
not altered then it will have the same value after the
LOOP...AGAIN has finished as it did before it started. For
instance :

SETVAR(5,V30)
LOOP(V30)
ADDVAR(1,V30)
AGAIN

is a valid piece of code and will result in V30 having the
value 10 when the loop terminates.

0 - North S Also: AGAIN
1 — West
2 - East Mnemonic: MAKEINTAN(P1[P2]) Shorthand:
3 - South Type: Object Command
4 — Above
% 121

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:

Description:

Example:

Flags:
Notes:

P1 - object number : numeric variable or constant
P2 — Area number : numeric variable or constant

Set the object attributes for object P1 in area P2 so that itis
intangible. If P2 is not specified then the current area is
assumed.

MAKEINTAN(2)
Object 2 will be made intangible.

MAKETAN, TAN?, INTAN?

MAKESOLID(P1[,P2]) Shorthand:

Object Command

P1 — object number : numeric variable or constant
P2 — Area number : numeric variable or constant

Set the object attributes for object P1 in area P2 so that it ig

solid (ie not wireframe). If P2 is not specified then the
current area is assumed.

MAKESOLID(2)
Object 2 will be made solid.

MAKEWIRE, WIRE?
MAKETAN(P1[,P2]) Shorthand:

Object Command

P1 — object number : numeric variable or constant
P2 — Area number : numeric variable or constant

Set the object attributes for object P1 in area P2 so that it is

tangible. If P2 is not specified then the current area is
assumed.

MAKETAN(2)
Object 2 will be made tangible.

122

See Also:

Mnemonic:

Type:
Parameters:

Description:

Example:

Flags:
Notes:

See Also:

Mnemonic:

Type:

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:

MAKEINTAN, TAN?, INTAN?

MAKEWIRE(P1[,P2]) Shorthand:

Object Command

P1 — object number : numeric variable or constant
P2 — Area number : numeric variable or constant

Set the object aftributes for object P1 in area P2 so that it is
wireframe. |f P2 is not specified then the current area is
assumed.

MAKEWIRE(2)

Object 2 will be made wireframe.

MAKESOILD, WIRE?

MIDSTR(P1,P2,P3,P4) Shorthand:
Variable Modifier

P1 = Source string variable or constant

P2 — Start posn : numeric variable or constant
P3 - End posn : numeric variable or constant
P4 — Destn string variable

P4 is set to a sub-string of P1, starting at character P2 and
ending at character P3,

MIDSTR(*Hello World",5,7,51)
Siissetto“oW"

MAX(P1,P2,P3) Shorthand:
Variable Modifier

P1 —destn numeric variable

P2 — source numeric variable or constant

P3 — Max value : numeric variable or constant

— = - = —

123

s

MOVE(P1,P2,P3) Shorthand:

i 2 e i
i dere e e el
1 | ~ Fac
e e
| e '

! MAX(V31,V30,12)
I V30 will be set to twelve

Description: P1 is set to the value of P2, limited so that the maximum Mnemonic:
value it can have is P3. .. ne: Animator Command
1l Example: SETVAR(24,V30) Parameters: P1 —delta X change : numeric variable or constant

P2 —delta Y change : numeric variable or constant
P3 —delta Z change : numeric variable or constant

124

i Flags: TRUE if result is zero Description: Move the animation list, for this ANIMATOR, by the relative
| ‘ Hikna: amount in each axis.
| | Sea Alsé: LIMIT, MIN Example: MOVE(5,7,-120)
{ I The current animation list will be move 5 units along the X
| axis, 7 units along the Y axis and -120 units along the Z
|' | | Mnemonic: MIN(P1,P2,P3) Shorthand: il 9 9
! -l' Type: Variable Modifier Flags:
i :| Parameters: P1 — destn numeric variable Notes: Only valid in ANIMATORS
| P2 — source numeric variable or constant See Also: MOVETO
' | j P3 — Min value : numeric variable or constant
' Description: P1 is set to the value of P2, limited such that the minimum inemonic: MOVEABLE?(P1[,P2]) Shorthand:
value it can have is P3.] :
S e [ype: Condition Statement
FXample: i ‘arameters: P1 — abject number : numeric variable or constant
MIN(V31,V30,12) ; :
P2 — area number : numeric variable or constant
V30 will be set to twelve R .
: i lescription: Check the object atiribute for object P1, in area P2, to see
Flags: TRUE if result is zero if it is moveable. If P2 is not specified then the current area
Noles-,: is assumed.
See Also: LIMIT, MAX Sxample: IF MOVEABLE?(3)
THEN
Mnemonic: MODE(P1) Shorthand: SETVAR(3,V200)
Type: System Modifier STARTANIM(1)
| Parameters: P1 - movement mode : numeric variable or constant ENDIF
| .
| . : to P1. P1 can be If object 3 is moveable then set V200 to 3 and start
! Description: Change the p:?yer s frlrl-::»zm-uant mode ANIMATOR 3
= — 1 i 3‘ s - : 1
bnaese=ly ¥ lags: TRUE if object moveable
Example: MODE(2) -
The player's movement mode is set to fly1. B Also:
Flags:
Notes: Inemonic: MOVETO(P1,P2,P3) Shorthand:
See Also: ype: Animator Command

125

e |

S Sl :
Parameters: P1 — New X Position : numeric variable or constant -Flags: TRUE if P1 is negative.
P2 — New Y Paosition: numeric variable or constant Notes:
P3 — New Z Position: numeric variable or constant _See Also:
Description: Move the animation list to the absolute coords P1,P2,P3.
Example: MOVE(0,0,0) ‘Mnemanic: NEGVAR(P1) Shorthand:
The current animation list will be moved to 0,0,0 Type: Variable Modifier
Flags: Parameters: P1 - numeric variable
Notes: Only valid in ANIMATORS Description: Negate the value in P1 and put it back in P1
See Also: MOVE Example: SETVAR(177,V34)
NEGVAR(V34)
Mnemonic: MULT(P1,P2) Shorthand: V34 will contain -177.
Type: Variable Modifier Flags: TEUE Fiasultis zero.
Parameters: P1 — numeric variable or constant Notes:
P2 — Numeric variable See Also: NOTVAR, XORVAR, ANDVAR, ORVAR
Description: Calculate P1*P2 and put the result in P2
Example: SETVAR(20,P1) Mnemonic: NEXT Shorthand:
MULT(10,P1) ype: Loop Command
P1 will be set to 200 . Parameters:
Flags: TRUE if result is zero Marks the end of a FOR...NEXT.
Notes:
See Also: DIV
. See the definition of FOR for examples and description
Mnemonic: NEGATIVE?(P1) Shorthand: FOR
Type: Variable Modifier
Parameters: P1 — numeric variable or constant inemonic: NOP S eethard:
Description: Check to see if P1 is less than zero ype: Execution Modifier
Example: SETVAR(-1,V30) ‘arameters:
IF NEGATIVE?(V30) lescription: No operation. Ignored by FCL.
THEN ixample: IF VIS?(3)
PSTRING(“Hello",0,0) THEN
ENDIF NOP
The string “Hello” will be printed in the top left hand corner ELSE

of the screen.

126

127

=

| FCLCOMMANDS

i

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:
Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:

Example:

Flags:
Notes:
See Also:

VIS(3)
ENDIF

If object 3 is visible then do nothing else make it visible.

NOT Shorthand: !
Condition Statement

Logically inverts the result of the following condition.
IF NOT ADDVAR(4,V55)

THEN

MOVE(400,0,0)

ENDIF

4 is added to V55. If the result is not 0 then move the
current animation list 400 units along the X axis.

TRUE if resulting condition is FALSE.
OR, AND
NOTVAR(P1)

Variable Modifier

P1 — numeric variable

Shorthand:

Bitwise complement variable P1. This is not the same as

negation.
SETVAR(0,V77)
NOTVAR(V77)
V77 will contain -1

TRUE if result is zero.

ORVAR, XORVAR, ANDVAR, NEGVAR

128

Mnemonic:
:| pe:

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
. pﬁ:

r hrameters:

Description:

Example:

Flags:
' otes:
See Also:

nemonic:
Type:

Parameters:
Description:

OBJEXISTS?(P1[,P2]) Shorthand:
Condition Statement

P1- object number : numeric variable or constant
P2 — area number : numeric variable or constant

Check if object number P1 in area P2 actually exists. If P2
is not specified then the current area is assumed.

IF OBJEXISTS?(74)

THEN

INVIS(74)

ENDIF

If object 74 exists then make it invisible.
TRUE if object exists

OBJNAME(P1,P2[,P3]) Shorthand:

Variable Modifier

P1 — Destn string variable

P2 — Object number : numeric variable or constant
P3 — Area number : numeric variable or constant

Store the name of object P2 in area P3 in the string P1. If
P3 is not specified then the current area is assumed.

OBJNAME(S1,5)

The name of object number 5 is stored in the string variable
51.

OR Shorthand: ||
Condition Statement

Logically ORs the results from the previous conditional
statement with next conditicnal statement.

129

-

S 1 i
bkl et
EhE e

e

Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:

Example:

Flags:
Notes:
See Also:

IF INVIS?(4) OR INVIS?(5)
THEN

INVIS(8)

ENDIF

If object 4 or object 5 are invisible then make object 6
invisible

TRUE if either result is TRUE
IF, AND, NOT
ORVAR(P1,P2) Shorthand:
Variable Modifier

P1 — numeric constant or variable

P2 — numeric variable

Bitwise OR the contents of P1 with P2 and put the result in
P2.

SETVAR($55,V30)
ORVAR($AA,V30)
V30 will contain $FF
TRUE if result is zero

ANDVAR, XORVAR, NEGVAR, NOTVAR
PAUSE(P1) Shorthand:
Execution Modifier

P1 - Key value : numeric variable or constant

Waits for the key whose ASCII value is P1 to be pressed. If
P1 is zero then the program waits for any key to be
pressed.

PAUSE($41)
Wait for “A" to be pressed

130

Mnemonic:
ype:

Parameters:

Description:

:xample:
ags:
Notes:

e Also:

Minemonic:

pe:
Parameters:

Description:

Example:

NOtles:

See Also:

PCHAR(P1,P2,P3) Shorthand:

Graphics Command

P1 — ASCII character value : numeric variable or constant
P2 — X coord : numeric variable or constant

P3—Y coord : numeric variable or constant

Display the character whose ASCII value is P1 and display
it at the coord P2,P3 on the screen.

PCHAR($31,34,65)
Will disp!ay “1" at location 34,65

PNUMBER, PSTRING, TEXTFONT, TEXTCOL

PNUMBER(P1, P2, P3,P4)Shorthand:
Graphics Command

P1 — numeric variable

P2 — print length : numeric constant or variable
P3 — X coord : numeric constant or variable

P4 — Y coord : numeric constant or variable

Print the number P1 in a field of length P2 characters, at
screen position P3,P4

SETVAR(34567,V30)
PNUMBER(V30,5,0,0)
“34567" is printed at location 0,0

If bit 15 is set in the length parameter (add $8000 to value)
then leading zeros will be displayed in the field to pad out
any unused positions. If bit 14 is set in the length
parameter (add $4000 to value) then the sign of the
number will not be displayed. If the length parameter is not
long encugh to hold the whole number then the least
significant digits are printed

eg
1234567 in a field of length 4 will be printed as 4567.
PCHAR, PSTRING, TEXTFONT, TEXTCOL

131

S

Mnemonic:

Type:
Parameters:

Description:
Example:

Flags:
Notes:
See Also:

Mnemonic:
T}rp&:
Parameters:
Description:

Example:
Flags:
Notes:

See Also:
Mnemonic:

Type:
Parameters:

Description:
Example:

Flags:

PRINT(P1,P2) Shorthand:
Graphics Command

P1- string variable or constant

P2 — instrument number

Print the string P1 into instrument number P2
SETSTR("Hello",S1)

PRINT(S1,2)

“Hello” will be printed to instrument 2

PROG(P1) Shorthand:
Execution Madifier
P1 — procedure number : numeric variable or constant

Save the current execution address and jump to the
procedure number P1. When the procedure is finished,
execution will return to the first instruction after the PROC
instruction.

PROC(10)
Procedure number 10 will be called

EXECUTE, RETURN
PSTRING(P1,P2,P3) Shorthand:
Graphics Command

P1 - string variable or constant

P2 - X coord : numeric variable or constant
P3 - Y coord : numeric variable or constant

Print the string P1 on the screen at screen location P2,P3.

PSTRING(“Hello",0,0)
“Hello” will be printed at location 0,0 on the screen.

132

Notes:
See Also:

Mnemonic:
Type:

Parameters:

Description:

Example:
Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:
Description:

Example:
Flags:
Notes:
‘See Also:

nemonic:
Type:
_F‘arameters:
‘Description:
‘Example:

Flags:
‘Notes:
See Also:

PCHAR, PNUMBER, TEXTFONT, TEXTCOL

RANDOM(P1,FP2)
Variable Modifier

Shorthand:

P1 — Maximum value : numeric variable or constant
P2 - Destn numeric variable

Place a random number between 0 and P1 in P2.
RANDOM(10,V34)

TRUE if random number is zero

REDRAW
System Modifier

Shorthand:

Force a redraw of the Freescape world at the next frame.

DRAWONLY

REMOVE(P1)
Animater Command

Shorthand:

P1 — Object number : numeric variable or constant
Remove object P1 from the animation list for this animator.
REMOVE(10)

Object 10 will be removed from the animation list

Only valid in ANIMATORS.
INCLUDE

133

T i . S
oot i
S e

Mnemonic:
Type:
Parameters:
Description:
Example:

Flags:
Notes:

See Also:
Mnemonic:
Type:

Parameters:

Description:

Example:
Flags:
Notes:

See Also:
Mnemonic:
Type:

Parameters:

Description:

Example:

Flags:

RESETAREA(P1) Shorthand:

System Modifier

P1 — Area number : numeric variable or constant
Force a reset of all the data associated with area P1.
RESETAREA(2)

Area 2 will be reset

RESETOBJ
RESETOBJ(P1[,P2]) Shorthand:

Object Command

P1 — Object number : numeric variable or constant
P2 — Area number : numeric variable or constant

Force object P1, in area P2, to be reset to its default
settings for position, attributes and colours. Also resets the
object’s detection flags. If P2 is not specified then the
object is assumed to be in the current area.

RESETOBJ(3,1)
Object number 3 in area 1 will be reset

RESETAREA, RESETOBJCOL, RESETOBJPOS

RESETOBJCOL(P1[,P2]) Shorthand:

Object Command

P1 — Object number : numeric variable or constant
P2 — Area number : numeric variable or constant

Force object P1, in area P2, to be reset to its defauLt_ .
settings for colours. If P2 is not specified then the object is
assumed to be in the current area.

RESETOBJCOL(3,1)
Object number 3 in area 1 will be reset to its default colours

134

Notes:
See Also:

Mnemonic:
Type:

Parameters:

Description:

Example:

Flags:
Notes:

 See Also:

Mnemonic:

Type:

Parameters:
Description:

Example:
Flags:
Notes:

See Also:

Mnemonic:

Type:

Parameters:
Description:

RESETOBJ, RESETOBJPOS

RESETOBJPOS(P1[,P2]) Shorthand:

Object Command

P1 — Object number : numeric variable or constant
P2 — Area number : numeric variable or constant

Force object P1, in area P2, to be reset to its default
settings for position. If P2 is not specified then the object is
assumed 1o be in the current area.

RESETOBJPOS(3,1)

Object number 3 in area 1 will be reset to its default
position.

RESETOBJ, RESETOBJCOL

RESTART
Execution Modifier

Shorthand:

Return the execution position to the marked START
position in an ANIMATOR. If no START position was

marked then execution restarts at the beginning of the
ANIMATOR.

Only valid in ANIMATORS.
START

RETURN Shorthand:
Execution Modifier

Return from a procedure or object. If returning to a

procedure then execution continues after the PROC
statement.

135

FCL COMMANDS

Example:
Flags:
Notes:
See Also:

Mnemonic:

Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:

Parameters:

Description:
Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:

Parameters:

PROC, EXECUTE

RIGHTSTR(P1,P2,P3) Shorthand:

Variable Modifier

P1 — Source string or variable

P2 — String length : numeric constant or variable
P3 - Destination string variable

Store the last P2 characters from the source string P1 in
the destination string P3.

RIGHTSTR(*Hello World",5,51)
S1 will be set to "World"

ROOT(P1,P2)
Variable Modifier

P1 — source number : numeric constant or variable

Shorthand:

P2 — destn numeric variable

Calculate the square root if P1 and save it in P2,
ROOT{(4,V30)

V30 will be set fo 2

TRUE if result is zero

SETBIT(P1,P2)
Variable Modifier
P1 — bit position : numeric variable or constant

Shorthand:

P2 — destn numeric variable

136

FCL COMMANDS

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:

Parameters:

Description:

Example:

lags:
Notes:
See Also:

Mnemonic:

Type:

?arametars:

Description:

Example:

Flags:
Notes:

See Also:

Set bit number P1 in variable P2.
SETVAR(0,V30)

SETBIT(4,V30)

V30 is set to 16.

TRUE if the result is zero

TOGBIT, CLEARBIT, BITSET?, BITCLEAR?

SETFADE(P1,P2[,P3]) Shorthand:
Graphics Command

P1 — Fade value : numeric variable or constant

P2 — Object number : numeric variable or constant
P3 — Area number : numeric variable or constant

Set the fade value of object number P2, in area P3, to P1.
If P3 is not specified then the current area is assumed.

SETFADE(2,4,6)
Object number 4 in area 6 has its fade value setto 2.

GETFADE

SETFADER(P1,P2,P3) Shorthand:

Graphics Command

P1 — User tade number : numeric variable or constant

P2 — Line of mask to change : numeric variable or constant
P3 — New mask value : numeric variable or constant

Set line P2 of the user fade number P1 to the bit image
specified by P3.

SETFADER(10,1,5AA)
Line 1 of user fade 10 will be set to a cross-hatch.

The user fades start at 10 and end at 15, you cannot edit
the system fade values from 0 fo 9.

GETFADER

137

L comuanos

Mnemonic:
Type:
Parameters:
Description:
Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:

Description:
Example:

SETGROUND(P1) Shorthand:

Graphics Command

P1 = New ground colour : numeric variable or constant
Set the ground colour to be colour number P1
SETGROUND(23)

The ground will now be colour 23

SETSKY

SETOBJCOL(P1,P2,P3[,P4])

Object Command
P1 — Colour number : numeric variable or constant

Shorthand:

P2 — Facet number : numeric variable or constant
P3 — Object number : numeric variable or constant
P4 — Area number : numeric variable or constant

Set facet number P2 of object number P3, in area P4, to
colour number P1. If the area number is omitted then the
current area is assumed.

SETOBJCOL(2,1,7)
Facet 1 of object 7 will be set to colour 2

GETOBJCOL

SETPIXEL(P1,P2,P3) Shorthand:

Graphics Command

P1 - X coord : numeric variable or constant

P2 - Y coord : numeric variable or constant

P3 — Colour number : numeric variable or constant
Set the pixel at screen location P1,P2 to colour P3.
SETPIXEL(34,123,234)

The pixel at screen coords (34,123) will be set to colour
234

jimmmmns_' "

' Flags:

Notes:
See Also:

Mnemonic:

Type:

Parameters:
Description:

Example:

Flags:
‘Notes:
See Also:

‘Mnemonic:

Type:

Parameters:

Description: |

‘Example:

.'Flags:
'Notes:

See Also:
‘Mnemonic:
Type:

Parameters:

Description:

Example:

GETPIXEL
SETSKY(P1) Shorthand:

Graphics Command

P1 — New sky colour : numeric variable or constant
Set the sky colour to be colour number P1
SETSKY(177)

The sky will now be colour 177

SEYGROUND
SETSTR(P1,P2) Shorthand:
Variable Modifier

P1 — source string constant or variable
P2 — destn string variable

Set string P2 to be equal to string P1.
SETSTR(*Hello World",54)

5S4 will now be “Hello World"

ADDSTR, CLEARSTR

SETVAR(P1,P2)

Variable Modifier
P1 — source number : numeric variable or constant

Shorthand:

P2 — destn numeric variable

Set P2 to the value of P1.
SETVAR(-17765,V237)

V237 will now have the value V237

138

139

| FLcoMMANDS

140

Flags: TRUE if result is zero Type: Object Command
Notes: Parameters: P1 - New Y position : numeric variable or constant
See Also: ADDVAR, SUBVAR, CLEARVAR P2 — Object number : numeric variable or constant
P3 — Area number : numeric variable or constant
Mnemaonic: SETXPOS(P1,P2[,P3]) Shorthand: Description: Set the Y position of object P2, in area P3,to P1. If P3 is
: : omitted then the object is assumed to be in the current
Type: Object Command area.
Parameters: P1 —New X position : numeric variable or constant Example: SETYPOS(100,2)
P2 — Object number : numeric variable or constant Object 2 in the current area will have its Y position set to
P3 — Area number : numeric variable or constant 100
Description: Set the X position of object P2, in area P3, o P1. If P3 is Flags: TRUE if position is at zero
omitted then the object is assumed to be in the current Notes:
area.
Example: SETXPOS(100,2) e Alvo: QETOD
Object 2 in the current area will have its X position set to .
100 Mnemonic: SETYSIZE(P1,P2[,P3]) Shorthand:
Flags: TRUE if position is at zero Type: Object Command
Notes: Parameters: P1 - New Y size: numeric variable or constant
See Also: GETXPOS P2 — Object number : numeric variable or constant
P3 — Area number : numeric variable or constant
Mnemonic: SETXSIZE(P1,P2[,P3]) Shorthand: Description: Set the the size of object P2, in area P3,to P1inthe Y
Tvps: Obi axis. If P3 is omitted then the ohject is assumed to be in the
ype: ject Command current area,
Parameters: P1 — New X size: numeric variable or constant Example: SETYSIZE(100,2)
P2 — Object number : numeric variable or constant Object 2 in the current area will have its X size set to 100
P3 — Area number : numeric variable or constant ;"Flags.' TRUE if size is zero
Description: Set the the size of object P2, in area P3, to P1 in the X Notes:
axis. If P3 is omitted then the object is assumed to be in the]
current area, See Also: GETYSIZE
Example: SETXSIZE(100,2)
Object 2 in the current area will have its X size set to 100 Mnemonic: SETZPOS(P1,P2[,P3]) Shorthand:
Flags: TRUE if size is zero Type: Object Command
Notes: Parameters: P1 — New Z position : numeric variable or constant
See Also: GETXSIZE P2 — Object number : numeric variable or constant
P3 — Area number : numeric variable or constant
Mnemonic: SETYPOS(P1,P2[,P3]) Shorthand: ;_I)escription: Set the Z position of object P2, in area P3, to P1. If P3 is

omitted then the object is assumed to be in the current

141

= ..

© FCLCOMMANDS |

Example:

Flags:
Notes:
See Also:

Mnemaonic:

Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:

Example:

Flags:
Notes:

area.
SETZPOS(100,2)

Object 2 in the current area will have its Z position set to
100

TRUE if position is at zero
GETZPOS
SETZSIZE(P1,P2[,P3]) Shorthand:

Object Command

P1 — New Z size: numeric variable or constant

P2 — Object number : numeric variable or constant

P3 - Area number : numeric variable or constant

Set the the size of object P2, in area P3, to P1in the Z
axis. If P3 is omitted then the object is assumed to be in the
current area.

SETZSIZE(100,2)
Object 2 in the current area will have its Z size set to 1 00
TRUE if size is zero

GETZSIZE
SHIFTLEFT(P1) Shorthand:
Variable Modifier

P1 = numeric variable

Shift P1 left one bit and, shifting a 0 bit into the Ieas_t)
significant bit. This is functionally equivalent to multiplying
the P1 by 2.

SETVAR(1,V77)
SHIFTLEFT(V77)

V77 will now be 2

TRUE if most significant bit set

Warning: shifting a negative number left can have
unpredictable results. It is much better to convert the
number to a positive one, shift it, and then convert it back

142

© FCLCOMMANDS

See Also:

Mnemonic:
Type:

Parameters:
Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

Parameters:

Description:

Example:

to a negative number
eg

IF VARLT?(0,V30)
THEN
NEGVAR(V30)
SHIFTLEFT(V30)
NEGVAR(V30)
ELSE
SHIFTLEFT(V30)
ENDIF
SHIFTRIGHT

SHIFTRIGHT(P1)
Variable Modifier
P1 : numeric variable

Shorthand:

Shift the variable P1 right by one bit, sign extending an
necessary (ie if the number is negative then a 1 is shifted
in, else a 0 is shifted in).

SETVAR(23,V30)

SHIFTRIGHT(V30)

V30 will now have the value 11

TRUE if least significant bit set
Functionally equivalent to dividing by 2
SHIFTLEFT

SHOT?
Condition Statement

Shorthand:

Test to see if the current object was shot (ie activated with
the LEFT mouse button).

IF SHOT?
THEN
INVIS(2)
ENDIF

143

Flags:
Notes:
See Also:

Mnemonic:

Type:
Parameters:

Description:
Example:
Flags:
Notes:

See Also:
Mnemonic:
Type:

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

If the current object was shot then set object 2 invisible. Type:
TRUE if object was shot. Parameters:
Only valid in object conditions Description:
ACTIVATED?, COLLIDED? Example:
SIN(P1,P2) Shorthand:
Variable Modifier
P1 —angle in degrees (0-359) : numeric variable or
constant
P2 - Destn variable Flags:
Calculate the Sine of P1 and store it in P2. Kintcs:

See Also:
TRUE if result is zero
Since all maths in FCL is integer, the actual value stored in Mnemonic:
P2 is Sin(P1)*16384

Type:
Cos .

- Parameters:

SOLID?(P1[:P2)) Shorthand: Description:
Condition Statement :
P1 — object number : numeric variable or constant Example:
P2 — area number : numeric variable or constant Flags:

Check the object attributes for object P1, in area P2, to see
if the object is currently solid. If P2 is omitted then the
object is assumed to be in the current area.

'Notes:
‘See Also:

IF SOLID?(4,5)

Mnemonic:
THEN .

Type:
MAKEWIRE(4,5) .

Parameters:
ENDIF

If object 4 in area 5 is solid then make it wireframe.
TRUE if object is solid.

‘Description:

WIRE?, MAKESOLID, MAKEWIRE ‘Example:

SOUND(P1) Shorthand: Flags:

10 Command

P1 — sound number to play : numeric variable or constant
Start playing sound number P1 immediately.

IF SHOT?

THEN

SOUND(4)

ENDIF

Lfths current object has been shot then start sound number

SYNCSND

START Shorthand:
Animator Command

Marks the point in the animator code where the animator
actually starts. This is the point that execution returns to
when a RESTART is performed.

Only valid in ANIMATORS.
RESTART
STARTANIM(P1[,P2]) Shorthand:
Animator Command

P1 —animator number : numeric variable or constant
P2 — area number : numeric variable or constant

_Starl ;ha ANIMATOR condition P1 that is in area P2, If P2
is omitted the the ANIMATOR is assumed to be in the
current area,

STARTANIM(3)
ANIMATOR number 3 will be started.

144

145

I

Notes:

See Also:

Mnemonic:

Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:

If an ANIMATOR is started that is not in the current area, it
will be marked as ready, but will not be activated until the
player is actually in the area it belongs to.

STOPANIM, RESTARTANIM

STARTANIMBRUSH(P1,P2,P3) Shorthand:
Graphics Command

P1 — brush number : numeric variable or constant
P2 — X coord : numeric variable or constant

P3 — Y coord : numeric variable or constant

Start the anim brush number P1 at the screen location
P2,P3.

STARTANIMBRUSH(1,10,15)
Anim brush number 1 will be started at location 10,15

STOPANIMBRUSH
STOPANIM(P1[,P2]) Shorthand:

Animator Command

P1 — ANIMATOR number : numeric variable or constant
P2 — Area number : numeric variable or constant

Stop the animator condition P1, in area P2, from executing.
If P2 is omitted then the current area is assumed.

STOPANIM(4)
Animator number 4 will be stopped.

STARTANIM, RESTARTANIM

STOPANIMBRUSH(P1) Shorthand:
Graphics Command
P1 — Brush number : numeric variable or constant

Stop the anim brush P1.

146

~ FCL COMMANDS

Example: STOPANIMBRUSH(1)
Flags:
Notes:
See Also: STARTANIMBRUSH
Mnemonic: STREQ?(P1,P2) Shorthand:
Type: Condition Statement
Parameters: P1 — string variable or constant
P2 - string variable
Description: Check if the two strings, P1 and P2, are identical.
Example: IF STREQ?(*END",S6)
THEN
PSTRING(“Game Over”,0,100)
ENDIF
:L gssrl;? ezqr:al to "END" then “Game Over” is displayed on
Flags: TRUE if strings match
Notes:
‘See Also: SETSTR
: nemonic: SUBVAR(P1,P2) Shorthand:
Type: Variable Modifier
Parameters: P1 — numeric variable or constant
_ P2 — numeric variable
ﬂ escription: Subtract P1 from P2 and put the results in P2.
Example: SETVAR(10,V30)
SETVAR(15,v31)
SUBVAR(V30,V31)
| V31 will now be equal to 5.
ags: TRUE if result is zero
otes:
e Also:

ADDVAR, CLEARVAR, SETVAR

147

= Sl i
ek : e -
: S

i

- FCLCOMMANDS

Mnemonic:
Type:
Parameters:
Description:
Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:
Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:
Parameters:
Description:

Example:

Flags:

SWAPSTR(P1,P2) Shorthand:
Variable Modifier

P1,P2 — string variables

Swap the strings P1 and P2.
SETSTR(*HELO",S1)
SETSTR("WORLD",S2)
SEWAPSTR(S1,52)

S1 will now equal “WORLD” and S2 will now equal
“HELLO"

SETSTR
SWAPVAR(P1,P2) Shorthand:

Variable Modifier

P1,P2 — numeric variables

Swap the values of P1 and P2

SETVAR(10,V77)

SETVAR(-17,V62)

SWAPVAR(V77,V62)

V62 will now equal 10 and V77 will now equal -17.

SETVAR
SYNCSND(P1) Shorthand:
10 Command

P1 - sound number

Synchronise sound number P1 with the start of the next
frame.

SYNCSND(10)
Sound number 10 will be start on the next frame.

148

Notes:
See Also:

Mnemonic:
Type:

Parameters:

‘Description:

‘Example:

Flags:
otes:

See Also:

Mnemonic:

Type:

Parameters:

escription:

Example:

3.=g

SOUND

TAN?(P1[,P2])
Condition Statement

Shorthand:

P1 — object number : numeric variable or constant
P2 — area number : numeric variable or constant

Check to see if object P1, in area P2, is tangible. If P2 is
omitted then the current area is assumed.

IF TAN?(7)
THEN
MAKEWIRE(7)
ENDIF

If object 7 is currently tangible then it will be made
wireframe.

TRUE if object is tangible
INTAN?, MAKEINTAN, MAKETAN

TESTMODE?
Condition Statement

Shorthand:

Check if FreeScape system is currently running in TEST
mode, in the editor.

IF TESTMODE?
THEN
PSTRING(“Test Mode”,0,0)
ENDIF

If running in test mode then the string “Test Mode™ will be
printed on the screen.

TRUE if running in test mode.

This can be a useful instruction for debugging purposes, as
any debugging displays generated inside a TESTMODE
ﬁ;ﬁ:&ton will not be displayed when a game is made using

149

FCL COMMANDS

See Also:
Mnemonic:

Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:
Example;
Flags:
Notes:

See Also:

Mnemonic:

Type:
Parameters:

Description:
Example:
Flags:

TEXTCOL(P1,P2) Shorthand:

Graphics Command

P1 — foreground colour : numeric variable or constant
P2 - background colour : numeric variable or constant

Set the fareground colour to P1 and the background colour
to P2 for text printing.

TEXTCOL(5,3)
PSRINT("Hello World",0,0)

“Hello World” will be printed in colour 5 on a background of
colour 0 at screen location (0,0)

TEXTFONT
TEXTFONT(P1) Shorthand:

Graphics Command

P1 — New font number : numeric variable or constant
Set the font to use for printing to P1.

TEXTCOL

THEN Shorthand:
Condition Statement

Marks the beginning of a block of command to be executed
if the preceding condition(s) were TRUE, otherwise
execution passes to the relevant ELSE if it exists otherwise
to the relevant ENDIF.

150

Notes:
See Also:

Mnemonic:
Type:

Parameters:

Description:

Example:
Flags:
Notes:

See Also:

‘Mnemonic:

a
[J .

Parameters:

Description:

ample:
Flags:

Notes:
See Also:

Mnemonic:
Type:
Parameters:

Description:

Example:

IF, ELSE, ENDIF

TIME(P1,P2,P3)
10 Command

Shorthand:

P1 — Hours numeric variable
P2 — Minutes numeric variable
P3 - Seconds numeric variable

Get the time from the system and place the hours in P1,
minutes in P2, and the seconds in P3.

DATE

TIMER? Shorthand:
Condition Statement

Checks the state of the condition timer.

TRUE if the timer value set in the Timer Delay section of
the DEFAULTS menu has been reached.

Does not operate correctly in object conditions.

TOASCII(P1,P2,P3)
Variable Modifier
P1 — numeric variable

Shorthand:

P2 — conversion length : numeric variable or constant
P3 —destn string

Convert P1 to an ASCII string and place the LAST P2
characters in to the destination string,

SETVAR(123456,V30)
TOASCII(V30,3,81)

151

Description:

Example:
Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:

S1 will be set to “456"
Flags:
Notes:
See Also: FROMASCII
Mnemeonic: TOGBIT(P1,P2) Shorthand:
Type: Variable Modifier
Parameters: P1 — bit number : numeric variable or constant
P2 — numeric variable
Description: Toggle bit number P1 in variable P2.
Example: SETVAR(5,V30)
TOGBIT(2,V30)
V30 will now equal 1
Flags: TRUE if result is zero
Notes: WARNING: Be careful about toggling the sign bit (bit 31) as
this may lead to erratic results.
See Also: SETBIT, CLEARBIT, BITCLEAR?, BITSET?
Mnemonic: TOGVIS(P1[,P2)) Shorthand:
Type: Object Command
Parameters: P1 — object number : numeric variable or constant

P2 — area number : numeric variable or constant

Toggle the visibility of object number P1, in area P2 (ie if its
visible, make it invisible and vice-versa). If P2 is omitted
then the object is assumed to be in the current area.

INVIS, INVIS?, VIS, VIS?

TOLOWER(P1)
Variable Modifier
P1 — string variable

Shorthand:

Force all upper case character to be lower case in the

152

Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:

Parameters:

Description:

Example:
Flags:

Notes:
See Also:

Mnemonic:
Type:

:.Parameters:

Description:

Example:
Flags:
Notes:
See Also:

‘Mnemanic:
Type:

Parameters:

string

SETVAR("HELLO World",57)
TOLOWER(S7)

S7 will now contain “hello world”

TOUPPER

TOUCH(P1[,P2))

Object Command
P1 ~ Object number to touch : numeric variable or constant

Shorthand:

P2 = Area number : numeric variable or constant

Force object P1 in area P2 to be flagged as touched. If P2
is omitted then the current area is assumed.

TOUCHED?

TOUCHED?(P1[,P2])
Object Command
P1 — Object number : numeric variable or constant

Shorthand:

P2 — Area number : numeric variable or constant

Check if the object P1, in area P2, has been touched. If P2
is omitted then the current area is assumed.

TRUE if object has been touched
TOUCH
TOUPPER(P1)

Variable Modifier
P1 - string variable

Shorthand:

153

e

 FCL COMMANDS

Description: Force all characters in P1 to be upper case.
Example: SETVAR(*HELLO World",S10)
TOUPPER(S10)
S10 will now contain "HELLO WORLD"
Flags:
Notes:
See Also: TOLOWER
Mnemonic: TRIGANIM(P1[,P2]) Shorthand:
Type: Animator Command
Parameters: P1 — ANIMATOR number : numeric variable or condition
P2 — Area number : numeric variable or condition
Description: Mark ANIMATOR condition P1, in area P2, as triggered. If
P2 is omitted then the ANIMATOR is assumed to be in the
current area.
Example: IF SHOT?
THEN
TRIGANIM(5)
ENDIF
If the current object has been shot then trigger animator 5
Flags:
Notes:
See Also: WAITTRIG
Mnemonic: TRIGGENERAL(P1) Shorthand:
Type: Execution Maodifier
Parameters: P1 — General condition number : numeric variable or
constant
Description: Trigger the general condition P1
Example: TRIGGENERAL(4)
General condition number 4 will be triggered.
Flags:
Notes:
See Also: WAITTRIG

154

i

FCL COMMANDS

Mnemonic:
Type:

Parameters:
Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:

Type:

Parameters:

Description:

Example:

Flags:

Notes:

See Also:

Mnemonic:

Type:
Parameters:

Description:

Example:

TRIGLOCAL(P1)
Execution Modifier

Shorthand:

P1 -~ Local condition number : numeric variable or constant
Trigger the local (area) condition P1.

TRIGLOCAL(7)

Local condition number 7 will be triggered

TRIGOBJECT(P1[,P2]) Shorthand:
Execution Modifier

P1 -~ Object number : numeric variable or constant
P2 - Area number : numeric variable or constant

Trigger the object condition associated with object number
P1, in area P2. If P2 is not specified then the current area
is assumed.

TRIGOBJECT(4)
The conditions for object number 4 will be triggered

WAITTRIG
UMOVE(P1,P2,P3) Shorthand:

System Modifier

P1 - Delta X value : numeric variable or constant
P2 - Delta Y value : numeric variable or constant
P3 - Delta Z value : numeric variable or constant

Move the player by the relative amounts in each axis, with
collision detection.

IF SHOT?
THEN
UMOVE(0,100,0)
ENDIF

155

 FCLCOMMANDS

Flags:
Notes:
See Also:

Mnemenic:

Type:
Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:
Parameters:
Description:

Example:
Flags:
Notes:
See Also:

Mnemonic:

If the current object has been shot then maove the player
100 units in the Y axis.

TRUE if no collision occurred.
UMOVETO

UMOVETO(P1,P2,P3) Shorthand:
System Modifier

P1 — X position : numeric variable or constant
P2 - Y position: numeric variable or constant
P3 — Z position: numeric variable or constant

Move the player to the absolute position in each axis, with
collision detection.

IF SHOT?
THEN
UMOVETO(0,0,0)
ENDIF

If the current object has been shot then move the player
1to the location 0,0,0

TRUE if no collision occurred.
UMOVE

UNDEFARRAY (P1) Shorthand:
Variable Modifier
P1 - array variable

Remove the definition for array P1 from the system and
return its memory to the free memory pool

DEFARRAY, CLEARARRAY

UNDESTROY(P1[,P2]) Shorthand:

Type:

Parameters:

Description:

Example:
Flags:
Notes:
See Also:

Mnemeonic:

Type:
Parameters:

Description:

Example:
Flags:
Notes:

_ See Also:

Mnemonic:

Type:

Parameters:

Description:

Example:

Object Command
P1 ~ Object number : numeric variable ar constant
P2 ~ Area number : numeric variable or constant

Mark object P1, in area P2, as not destroyed. If P2 is not
specified then the object is assumed to be in the current
area.

DESTROY, DESTROYED?
UNLOCK(P1[,P2]) Shorthand:

Object Command

P1 ~ Object number : numeric variable or constant
P2 = Area number : numeric variable or constant

Set object number P1, in area P2, to be unlocked. If P2 is
not specified then then object is assumed to be in the
current area.

LOCK, LOCKED?, UNLOCKED?

UNLOCKED?(P1[,P2]) Shorthand:
Condition Statement

P1 — Object number : numeric variable or constant
P2 — Area number : numeric variable or constant

Check if object P1, in area P2, is currently unlocked. If P2
is not specified then the current area is assumed.

IF UNLOCKED?(2)

THEN

LOCK(2)

ENDIF

If object 2 is currently unlocked then mark it as locked.

156

157

Flags: TRUE if object is unlocked
Notes:
See Also: LOCK, LOCKED?, UNLOCK
Mnemonic: UPDATEI(P1) Shorthand:
Type: Graphics Command
Parameters: P1 — Instrument number : numeric variable or constant
Description: For instrument P1 to be updated at the next frame.
Example:
Flags:
Notes:
See Also:
Mnemeonic: VAREQ?(P1,P2) Shorthand: VAR=?
Type: Condition Statement
Parameters: P1 — numeric variable or constant

P2 — numeric variable
Description: Check if P1 is equal to P2.
Example:
Flags: TRUE if P1=P2
Notes:
See Also: VARGE?, VARGT?, VARLE?, VARLT?
Mnemonic: VARGE?(P1,P2) Shorthand: VAR>=?
Type: Condition Statement
Parameters: P1 — numeric variable or constant

P2 — numeric variable or constant
Description: Check if P1 is greater than or equal to P2.
Example:
Flags: TRUE if P1>=P2
Notes:
See Also: VAREQ?, VARGT?, VARLE?, VARLT?

Mnemonie:
Type:

Parameters:

Description:

Example:
Flags:
Notes:
See Also:

Mnemonic:

Type:

Parameters:

Description:

Example:
Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:

Description:

Example:
Flags:
Notes:
See Also:

Mnemonic:

Type:

VARGT?(P1,P2) Shorthand: VAR>?
Condition Statement

P1 = numeric variable or constant

P2 - numeric variable or constant

Check if P1 is greater than P2.

TRUE if P1>P2

VAREQ?, VARGE?, VARLE?, VARLT?
VARLE?(P1,P2)

Condition Statement
P1 = numeric variable or constant

Shorthand: VAR<=?
P2 - numeric variable or constant

Check if P1 is less than or equal to P2.

TRUE if P1<=P2

VAREQ?, VARGE?, VARGT?, VARLT?
VARLT?(P1,P2)

Condition Statement
P1 - numeric variable or constant

Shorthand: VAR<?

P2 - numeric variable or constant

Check if P1 is less than P2.

TRUE if P1<P2

VAREQ?, VARGE?, VARGT?, VARLE?

VIEWWINDOW(P1,P2,P3,P4) Shorthand:
Graphics Command

158

159

FCL COMMANDS

Parameters:

Description:
Example:
Flags:
Notes:

See Also:

Mnemonic:
Type:

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:

Description:

Example:

P1 = X left : numeric variable or constant
P2 — Y top: numeric variable or constant

P3 — X right : numeric variable or constant
P4 —Y bottom: numeric variable or constant
Set the view window to the specified coords.
VIEWWINDOW(0,0,319,189)

VIS(P1[,P2]) Shorthand:

Object Command

P1 - Object number : numeric variable or constant
P2 — Area number : numeric variable or constant

Set the attributes for object P1, in area P2, so that it visible.
If P2 is not specified then the object is assumed to be in the
current area.

IF INVIS?(4)

THEN

VIS(4)

ENDIF

Object 4 will be made visible

INVIS, TOGVIS, INVIS?, VIS?
VIS?(P1[,P2]) Shorthand:

Condition Statement

P1 — Object number : numeric variable or constant
P2 — Area number : numeric variable or constant

Check the attributes for object P1, in area P2, to see if it
visible. If P2 is not specified then the object is assumed to
be in the current area.

IF VIS?(4)

Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:
Description:

Example:
Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:
Description:

Example:
Flags:
Notes:
See Also:

Mnemonic:
Type:

Parameters:
Description:

Example:

THEN

INVIS(4)

ENDIF

Object 4 will be made invisible
THUE if object is visible

INVIS, INVIS?, TOGVIS, VIS

VIST(P1) Shorthand:

System Modifier

1 = Area number : numeric variable or constant
Force area number P1 to be flagged as visited

VISITED?

VISITED?(P1) Shorthand:
Condition Statement
P1 « Area number : numeric variable or constant

Check to see if area number P1 has been visited.
TRUE If area has been visited
VISIT

WAIT Shorthand:
Exacution Modifier

Stop execution until the next Freescape frame an return
axacution to the Freescape kernel. When the next frame
oceurs, execution will continue from the next instruction

automatically.

160

161

'FCL COMMANDS

FCL COMMANDS

Parameters:

Description:

Example:

Flags:
Notes:
See Also:

1 = numeric variable or constant

P2 = numeric variable

Bitwise exclusive or P1 with P2 and put the result in P2.
SETVAR($AA,V30)

XORVAR($FF,V30)

V30 will now have the value $55

TRUE if the result is zero

ANDVAR, ORVAR, NEGVAR, NOTVAR

Flags:

Notes:

See Also:

Mnemonic: WAITTRIG Shorthand:

Type: Execution Modifier

Parameters:

Description: Stop execution of this condition and return control to the
Freescape kernel. Execution will continue from the next
instruction when the relevant trigger command is issued for
this condition.

Example:

Flags:

Notes:

See Also: TRIGANIM, TRIGGENERAL, TRIGOBJECT, TRIGLOCAL

Mnemonic: WIRE?(P1[,P2]) Shorthand:

Type: Condition Statement

Parameters: P1 — Object number : numeric variable or constant
P2 — Area number : numeric variable or constant

Description: Check the attributes for object P1, in area P2, to see if it is
wireframe. If P2 is not specified then the object is assumed
to be in the current area.

Example: IF WIRE?(4)

THEN

MAKESOLID(4)
ENDIF

Object 4 is made solid.

Flags: TRUE if object is wireframe.

Notes:

See Also: SOLID?, MAKESOLID, MAKEWIRE

Mnemonic: XORVAR(P1,P2) Shorthand:

Type: Variable Modifier

162

163

SOUND EDITORS

SOUND EDITORS

13: THE SOUND EDITORS

OK, so you've created a Freescape world that is a veritable orgy of colour, shape and
movement. But still its not quite right, there still seems to be something missing : yes,
that's right, we need to make a veritable orgy of colour, shape, movement and
SOUND! Included with each version of the program is at least one type of sound
editor.

PC

Included with the PC version are not one, not two, but three different sound editors.
These are for the Ad Lib sound card and compatibles, the Roland LAPC-1 sound card
and the good old built in beeper. To run the sound editor, exit 3DEDIT and type
3DSOUND at the DOS prompt. You will then be presented with a menu with the three
sound cards — the ones you actually have installed will be marked with an asterisk.

Beeper

If you select Beeper then you will see a
screen like fig. 13.1. At the top of the
screen is a menu bar which allows you to
load and save individual sound effects,
load and save modules (collections of

to get help and to quit.

el ¥ 0 [Giisranrs ¥ 0

|
© NERHETECT|%s v ——

Figure 13.1

At the top of the main screen you will see a PLAY button — use this to play your
sound effect. Next to that is a big windew which allows you to edit the sound
effect waveform. To the right of this is a bar which allows you to change the base
pitch (frequency) that the sound effect will be played at. Underneath the edit
window is another bar which allows you to change the duration of the sound
effect. Underneath that is the graph scale setting which changes the amount of
space available to show the waveform. Next to that are two buttens one which
turns noise on and off and one which turns vibrato on and off.

Finally, at the bottom of the screen is a box that allows you to change the name
of the current effect.

A beeper sound effect is made up by first deciding what the base pitch will be.
Within the edit window is a waveform with four small squares on it. You can click

sound effects) for 3D Construction Kit 2.0,

164

on these squares and drag them around the screen to define what pitch, above
or below the base pitch, the sound effect will have at that particular time.

Ad-Lib

If you select Ad-Lib then you will see a
screen like fig. 13.2. At the top of the
screen is a menu bar which allows you to
load and save individual sound effects,
load and save modules (collections of
sound effects) for 3D Construction Kit 2.0,
to get help and to quit.

Figure 13.2

At the top of the main screen you will see a PLAY button — use this to play your
sound effect. Next to this are two windows which allows you to edit the
parameters for both the modulator and carrier of the FM synthesis waveform. To
the left of these are buttons which allow you to change the volume, change in
pitch with time and the level of distortion applied to the waveform. There is also a
bar which allows you to ehange the base pitch (frequency) that the sound effect
will be played at,

Finally, at the bottom of the screen is a box that allows you to change the name
of the current effect.

See your Ad-Lib documentation for more information.

Roland

ROLAND | A

: If you select Roland then you will see a
screen like fig. 13.3. At the top of the
screen is a menu bar which allows you 1o
load and save individual sound effects,
load and save modules (collections of
sound effects) for 3D Construction Kit
2.0, to get help and to quit.

Figure 13.3

165

~ SOUND EDITORS , | SOUND EDITORS

' At the top of the main screen you will see a PLAY button — use this to play your [

| sound effect. Next to that is a big window which allows you to edit the way the : -
waveform pitch changes with time. Underneath this is a bar which allows you to § LOADSAMPLE Load an individual sample in to the editor

change the base pitch (frequency) that the sound effect will be played at, and a |

bar to change the duration of the sound effect. Underneath that is the SAMPLE

box which changes the sample which is used for the sound effect and a box to QuUIT Loave the sound editor

change the overall sound effect volume.

‘ Finally, at the bottom of the screen is a box that allows you to change the name

of the current effect. When you click on EDIT you will be
presented with a screen like fig. 13.5. At
the top of this screen is the sample view
window. This gives a graphical
representation of the sound waveform.
Using the mouse you can mark a section
il of the waveform to be manipulated.

Underneath this are a series of waveform

| Within the edit window is a line with three small squares on it. You can click on
these squares and drag them around the screen to define what pitch, above or
below the base pitch, the sound effect will have at that particular time.

See your Roland documentation for more information. e 4 Ritbuttone (these only work on 3 marked
Figure 13.5 RS-
Amiga cuT Gut the marked range and put in the paste buffer
To load the Amiga sound editor quit the e
3D editor and either type 3DSOUND from COPY Muake a copy of the marked range and put it in the paste buffer

CL! or double click on its icon from
; will be nted with
:Uc?er};m?k%hﬁ; -::1u 3.4, At tﬁ;efoz ::: the - PASTE Insert the paste buffer at the beginning of the marked area
screen is the sample selector window. For
the current module this lists all the
samples built in to it. Below this window is MIX Mix the contents of the paste buffer with the currently marked area
a series of buttons :

Figure 13.4 ZOOM+ Zaom In on range

CLEAR Remove all samples from the sample bank. ZOOM- Zoom out from range

‘ REMOVE Remove highlighted sample from sample bank.

To the left and below these buttons are the effects buttons (again these only work on a

marked range). Nex! to the buttons are two sliders which control level and duration for

| each of the effects.

| LOAD Load a new sample bank.

|

| ECHO Echo marked range

I SAVE Save the current sample bank out.
METAL Apply a “Heavy Metal" distartion

| EDIT Edit the highlighted sample ik i 1

166 167

REVERB Apply reverb to range
CHORUS Apply a chorus effect to range
BASS Boost bass frequencies
TREBLE Boaost treble frequencies
FADE+ Fade sample volume up from 0
FADE- Fade sample volume down to 0
FLIP Reverse range

INVERT Invert range

NB None of these effects are actually applied until the APPLY button is used.

To the right of the screen are the playback buttons :

PLAY Play the sample

TEST Test the sample with the effect requested
APPLY Apply the current effect to the sample
FILTER Turn the internal hardware filter on and off
DONE Return to sample editor

Atari ST

See documentation file on disk for details.

14: THE MAKE UTILITY

So, once you vo created your symphony of vision and sound, what can you do with it?
Well the answaer ls, using the Make utility, you can create a standalone executable file
that you can distribute fresly i6 amaze and confound your friends. Before you use
Make, first make sure that you have saved you entire world out (using SAVE DATA
from the FILE manu in ADEDIT), Al this point, if you are intending to save you
executable o floppy make sure you have a formatted disk with enough space to save
all you data, If you are siaving to hard drive, make sure that you have enough free
space. Type JDMAKE to run tha Make utility.

Once in Make, you will asked 1o give a seven character name which will be used to
start your executable program running. You will then be asked to locate the drive and
directary whore all the data associated with your file is saved. Make will create a new
sub-directory In your chosen directory which will have the name you entered earlier
preceded by an undarseors ("). This sub-directory will contain all the data, borders
and sound files assoclated with your world will be stored. For this reason, any
directories with & lending undarscore will not be selectable, so you cannot create a
new environmant inaide & praviously created environment directory.

At this point Muke will save all the relevant system files and then the run-time
Freescape system ("Hunner’), Next you will be asked to locate you data file (.3WD
extension) that you saved your world in. Your data file will then be saved off and
scanned to sen If any borders are needed. If so these are then saved as well.

To executa your slandalons anviranment, simply type the name you chose for your
executable program.

168

169

|s

APPENDIX 1

A1.1 Installation and Loading Instructions
PC

The PC version can only be run from hard drive. Insert disk 1 into the floppy drive and
type INSTALL and follow the on-screen prompts. Included with your disk are a number
of sample objects (“THE CLIP-ART CATALOGUE") and sound editors for the most
popular sound boards on the PC, you may choose to not install these by answering No
at the correct prompt. Once installed, you must run 3DSETUP before running the main
program for the first time. This will allow you to choose the graphics mode, default
sound board and type of expansion memory to use. To run the editor type 3DEDIT.

Amiga

The Amiga version can either be run from floppy or from hard drive. Before you do
anything : MAKE A BACKUP. If running from floppy then simply double click on the
3DEDIT icon or type 3DEDIT from the cli prompt. To install to hard drive double click
on the INSTALL icon and follow the on-screen prompts.

NB 3D Construction Kit 2.0 is packed full of features, and as a result it need a lot of
memory to run. Certain versions of the Amiga (notably the 1Meg machines with
Workbench 2 and hard drives) use a lot of memory for resident drivers etc. and this
may cause problems. Before running the program ensure you have as few memary
resident utilities and system files as possible, if you then run the program and the title
screen does not appear, the try closing all windows (including the WorkBench
window). Alternatively, we have provided a modified STARTUP-SEQUENCE for WB2
which allows you to remove a lot of the memory overhead.

Alari ST

The ST version can either be run from floppy or from hard drive. Before you do
anything : MAKE A BACKUP. If running from floppy then simply double click on the
3DEDIT icon. To install to hard drive, copy all files and subdirectories from both disks
into a sub-directory on your hard drive.

170

A1.2 Filename Extensions

BWD World data file

.3AD Aroi clatn file

30D Objoot data file

3NA Ad Liby sound file (PC only)
3NB Beapar sound file (PC only)
3NR Roland sound file (PC only)
.35M AMIGA/ET Sample file
TXT Condition text file

IFF Brush/Border file extension

A1.3 Loading Objects / Worlds from the Clip-Art Catalogue

First select the abjeal or warld that you want from the catalogue. Underneath the
picture you will see & name, If this ands in .30D then you need to select LOAD
OBJECT alse select LOAD DATA, bath on the FILE menu. Using the file selector, find
the clip art directory, which 8 & sub-directory of the drive where you are running 3D
Construction KIt 2.0 fram. Typa i the filename and click on OK.

A1.4 Importing Objects from 3D Construction Kit 1.0

Due to the anhancemanis we have made to 8D Construction Kit 2.0 it was not possible
to make areas ant omoh sived In 30 Construction Kit 1.0 format directly loadable
into 30 Construction Kit 2.0, However, we have included the facility to load world

- (data) files, so If you load 90 Sonstruction Kit 1.0 and save out your object or area in

data format, you will then be able 1o load it into 3D Construction Kit 2.0.

CAVEAT: 3D Construetion Kit 1.0 allowed objects to have a maximum coordinate
value of 8192, This will tauss lnms If loaded into 3D Construction Kit 2.0. To get
round this problem, adil your in 40 Construction Kit 1.0 to make sure all
coordinates are lass than 8102,

171

| APPENDIX 2

APPENDIX 2 : Hints and Tips or Dr. Bozz's FCL 3D
Construction Kit 2.0 Clinic

| have an box object which | want to duplicate. It has a condition attached to it
that makes it disappear when it is shot. Unfortunately, when | do duplicate it the
condition on the new object does not work.

The problem is that you have used an absolute object number in your object
condition :

IF SHOT?
THEN

INVIS(2)
ENDIF

When you duplicate the object, the duplicate will have a different object number to the
original and so the INVIS will not work. To get round the problem use the special
system variable ME, which contains the object number of the current object.

SETVAR(ME,V511)
IF SHOT?
THEN

INVIS(ME)
ENDIF

Now, no matter how many times you copy the object, it will always disappear!

I've built a house with an outside view. Unfortunately, | can’t see out of my
windows.

Well try cleaning them then! (Sorry, my little joke). Sounds like a job for the good old
FADEVAL. Try setting the window object fade value (follow OBJECT->ATTRIBUTES)
to a value other than 0. For a different effect edit one of the user fade values to give a
cross-hatch appearance.

I'm still not sure about the different types of invisibility.

OK. There are basically three types of invisibility. Firstly, there is colour invisibility. On
the colour select panel, the first colour available (marked with an 1) is transparent : any
facet coloured with will have all the calculations associated with it performed, but will
not be drawn. Note that an object that is completely coloured Invisible will still exist in
the world and can still be collided with, shot etc. The second type of invisibility is a
facet with a fade value of 9, this is like the colour invisible but the facet does actually
have a colour, you just can't see it (if you see what | mean). The final type of invisibility
is an object that has its INV attribute set (OBJECT->ATTRIBUTES) : this is like setting
all the facets of an object to Invisible colour at once and makes it invisible to collisions
aswell.

How do | print out my conditions so | can amaze and entertain my friends?

Condition files are simply normal text files, so you can print them in the same way you
normally print files.

When should | use SYNCSND and when should | use SOUND.

If you remember from the reference section SOUND generates sounds as soon as the
SOUND command is executed. SYNCSND however will not start generating sounds
until the next frame update. SOUND is useful, therefore, if you have to have immediate
feedback on something the program does. For instance, if you have a button that can
be clicked on that performs an action that may take a long time (for instance : loading
a border from disk), you may want a confirming beep to let the user know that the
program has noticed the button press. This beep will be no use if it takes a long time to
come, so use SOUND to generate it immediately. SYNCSND is useful for those
situations where you have a sound effect that could be generated more than once in
one frame such as an explosion. For instance, you may have a number of objects that
when shot generate an explosion sound. You don’t want the explosion fo be
continually re-triggered, so use SYNCSND.

172

173

 APPENDIX 3

APPENDIX 3 : KEYBOARD SHORTCUTS

Modes
ALT +t
ALT +n
ALT +e
ALT +s
ALT +i
ALT +c
SHIFT + SPACE

View Fasitions
ALT +v
ALT + F1
ALT + F2
ALT + F3
ALT + F4
ALT + F5
ALT + F6
ALT + F7
ALT + F8
ALT + F9

Info

ALT +w
ALT + 0
ALT +a
ALT +m
ALT +h
ALT + x
ALT +q

Enter test mode

Create a new object

Edit object

Select object

Edit object attribute information
Colour object

Shortcuts on/off

Select new vehicle
Change to WALK mode
Change to FLY1 mode
Change to FLY2 mode
Change to camera 1 view
Change to camera 2 view
Change to camera 3 view
Change to camera 4 view
Change to camera 5 view
Change to camera 6 view

Set status window to world section
Set status window to object section
Set status window to area section
Set status window to memory section
Toggle highlight on/off

Toggle exclude on/oft
Quit

APPENDIX 3

Execute command
Skip command

Exit debugger

Scroll window up
Scroll window down
Select new variable 1
Select new variable 2
Select new variable 3
Select new string
Toggle Wait flag
Toggle waitTrig flag

(IBM version only)
"PGUP
PGDOWN

Move PC up

Move PC down

Move to start of program
Move to end of program

| |!|. I & fhE | R
1 18 L Wi HEFER PRI
;=_||.|'|||”|J ! | |||m|n--!|| il 'l'“' !

gpecifications include:-
WORLD SIZE
SCREEN RESOLUTION
REAL TIME LIGHTING
OBJECT & VIEW ROTATIONS
CONTROL LANGUAGE
TEXTURE MAPPING
DYNAMICS

o

Product Range includes:-

The next step is...

UPER

Interactive Virtual World Creation
and Visualisation

J SUPERSCAPE VRI.
~ and editing system. Incl

% SUPERSCAPE DEVE

SCAPE

4.39 Billion units cubed

Real time switchable up to 1280 x 1024
Multiple static or moving light sources
0.05 degree resolution

sCL over 420 commands

In VRT3 due for release Q1 1993

Including friction, restitution, effects
under gravity, rotationdl and
translafional velocities

PLUS

Spin and exfrude shape creation, DXF import, open file format.
networked virtual worlds, movement paths, direct object control,
tweening of 3D Animations, multiple undo, file security.
plus many other features.

Complete Interactive World Creafion
udes Superscape Visualiser, Shape
Editor, World Editor, VR Clip Art and Sample Virtual Worlds.

% SUPERSCAPE NETWORK KIT. Optional extension to
SUPERSCAPE VRT fo allow creation of Networked Virtual Worlds.

LOPERS KIT. Optfiondl toolkit for

programmers only wishing to interface SUPERSCAPE Virtual

Worlds with 3rd Party ap

plications or devices.

% SUPERSCAPE VISUALISER. For use with stand alone run-

time applications requir

ing Interactive Visualisation of

SUPERSCAPE Virtual Worlds.

For a FREE Information Pack on the complete range of
SUPERSCAPE products and services, please contact:-

DIMENSION

e —————
INTEFINATIONAL

Zephyr One, Calleva Park, Aldermaston, Berkshire, England, RG7 4Q7
Tol: +44 (0)734 810077 Fax: +44 (0)734 816940

ADDENDUM

Mnemonic: SETBRUSHANIM(P1,P2,P3) Shorthand:
Type: Graphics Command
Parameters: P1 - brush number : numeric variable or constant

P2 - Mode : numeric variable or constant
P3 - Frame number: numeric variable or constant

Description: For anim brush number P1 set the current mode to P2 and the current frame
number to P3. The mode parameter P2 can have the following values :
1 STOPPED
2 SINGLE
3 REPEAT
4 BOUNGE
5 RANDOM
Add 256 to the mode value for a backwards direction.
Example: SETBRUSHANIM{2,-1,4)
Make brush anim display frame 4 without changing the mode.
Notes: Setting either of the parameters to -1 will leave it unchanged,
See Also: GETBRUSHANIM
Mnemonic: STARTBRUSHANIM{P1,F2,F3 FP4) Shorthand:
Type: Graphics Command
Parameters: P1 - brush number : numeric variable or constant

P2 - X coord ; numeric variable or constant
P3 - ¥ coord : numeric variable or constant
P4 - Mode : numeric variable or constant

Description: Start the anim brush number P1 at the screen location P2,P3. The mode
parameter P4 can have the following values :
1 STOPPED
2 SINGLE
3 REPEAT
4 BOUNCE
5 RANDOM
Acd 256 to the mode value for a backwards direction,
Example: STARTBRUSHANIM(1,10,15,4)
Anim brush number 1 will be started at location 10,15 in bounce mode.
See Also: STOPBRUSHANIM
Mnemonic: STOPBRUSHAMIM{P1) Shorthand:
Type: Graphics Command
Parameters: P1 - Brush number : numeric variable or constant
Description: Stop the anim brush P1,
Example: STOPBRUSHAMNIM(1)
Notes: Effectively marks the anim brush as inacfive.
See Also: STARTBRUSHANIM
4

Co
==
c™ 'y
Coy
e
cro
ﬁ
—
o
o
ﬂ
e
ﬁ
=
—_—

ADDENDUM

1)P.7, para5 : On the PC version the floor is called "Cuboid” and is green (effectively there is no ground).
2) P.13, para 2 : The first object on the list will be called "Cuboid” on the PC version.
3) P.14, para 2 : The unavailable functions on the MOVE panel are not shaded out in the current version.
4) P.18, para 5 :There is always an enfrance created in the default world, so your crealed entrance will be entrance 2.
5) P.18, para 6 :Because there is a default entrance, there are two enirances so the Next button will not be dimmed.
6) P.20, para 8 :Area colours do not apply to the PC version, the same palette of 256 colours apply to all areas.
7) P31, para 4 :0n the PC version, border files have the extension LBM and have slightly different names depanding on
whether you want EGA or VGA.
8)'P.32, para 3:Screen co-ordinates go from the top left of the screen not the bottom left
9) P.38, para 2:0n the PC version only the MASK and FILE fields may be edited, not the PATH field.
10) P.50:The SOUND menu on the ST is the same as the Amiga.
11) P.80:Comments - comments may be inserted into a FCL condition by preceeding the line with a semi-colan
eg.; This is a comment
12) P.88, Example code for BITSET :This will check for the right mouse button (to check for the left use BITSET?{0,V16))
13) P.96, Notes for DISABLE :DISABLE and ENABLE only work in TEST mode.
"14) P.96, Parameters eniry for DISTANCE :P5,P6 and P7 are optional, if they are not specified then the viewpoint is used
as the second parameter
15) P97, Description entry for DRAWONLY :Enables you to perform graphic commands, such as moving animation
brushes across the screen, without doing a (potentially) slow redraw of the 30 view.
16) P.100, Description for FADE? :FADE? is true if an object is fading.
17) P.105, Notes for FOPEN :Only one file may be open atany time.
18) P.118 : LIMIT is a Varible Modifier not a Graphics Command
19) P.119 : LOADWORLD performs a reset, so all variables except V255 are cleared
20) P.126, Example for MOVETO :MOVE should say MOVETO,
21) P.148, Example for SWAPSTR :should say SWAPSTR and not SEWAPSTR.
22) P.150, Notes for TEXTFONT :Current valid font number are -1 and -2. Fulure versions will have more fonts included
23) P.160, Notes for VIEWWINDOW :On the PC version the maximum window width is 256 pixels, and it can only be
changed in units of 8 pixels,
24) P.171, A1.2 Filename Extensions :On the PC the extension for a BRUSHBORDER file is .LBM .
25) Appendix 3:
SHIFT +5 Shortcuts onfoff
ALT+v Select new vehicle
CTRL + F1 Change to WALK mode
CTRL + F2 Change to FLY1 mode
CTRL + F3 Change to FLY2 mode
CTRL + F4 Change to camera 1 view
CTAL +F5 Change to camera 2 view
CTRL + F6 Change to camera 3 view
CTRL + F7 Change to camera 4 view
CTRL + F8 Change to camera 5 view
CTRL + F9 Change to camera 6 view
F1,w, and t do not work properly in the debugger. Click on the figlds with the mouse instead.
26) The definitions for brush animation commands have changed, See the new definitions below.

Mnemonic:

Parameters:
Description:

Example:

Flags:

Mnemonic:

Type:

Parameters:
Description:

Example:

See Also:

Mnemonic:
Type:

Parameters:
Description:

Example:

See Also:

Mremonic:
Type:

Parameters:

Description:

See Also:

Mnemaonic:

Type:

Parameters:

Description:

Example:

See Also:

BRUSHANIMACTIVE?{P1) Shorthand:
Caondition Statement

P1 - Brush Anim number : numeric variable or constant

Check if brush anim P1 is currently aclive.

IF BRUSHANIMACTIVE?(3)

THEN

STOPBRUSHANIM(3)

ENDIF

If brush anim 3 is active it will be stopped

TRUE if brush anim is active

DISABLEBRUSHANIM{P1) Shorthand:
Graphics Command

P1 - Brush Anim number : numeric variable or constant
Disable brush anim P1.

IF BRUSHANIMACTIVE?(3)

THEN

DISABLEBRUSHANIM{3)

ENDIF

It brush anim 3 is active it will be disabled.
EMABLEBRUSHANIM

EMABLEBRUSHANIM(P1) Shorthand:
Graphics Command

P1 - Brush Anim number ; numearic variable or constant
Enable brush anim P1.

IF NOT BRUSHANIMACTIVE?(3)

THEN

ENABLEBRUSHANIM(3)

ENDIF

If brush anim 3 is not currently active then enable it.
DISABLEBRUSHANIM

GETBRUSHANIM(P1,F2,F3 P4) Shorthand:

Graphics Command

P1 - brush number : numeric variable or constant

P2 - Mode : numeric variable or constant

P3 - Current frame : numeric variable or constant

P4 - Total frames : numeric variable or constant

For anim brush number P1 get the current mode into P2, the current frame
number into P3 and the total number of frames into P4, The mede parameter
P4 can have the following values :

1 STOPPED

2 SINGLE

3 REFEAT

4 BOUNGE

5 RANDOM

Add 256 to the mode value for a backwards direction.

SETBRUSHANIM

RESTARTANIM(P1[,P2]) Shorthand:

Animator Command

P1 - Animator number : numeric variable or constant

P2 - Area number : numeric variable or constant

Restart Animator condition P1 in area P2, If P2 is omitted then the Animator is
assumed to be'in the current area,

RESTARTANIM(1,10)

Animatar number 1 in area 10 will be restarted.

STARTANIM, STOPAMNIM

3

TRANSPORT
TRANSPORT TRANSPORT

c L I I a] t 0001.30D 0002.30D

LIBRARY

0004.30D 0005.3CD

0006.30D 0007.3CD

‘ 0008.30D 0009.30D 0010.30D
iMo®srtivie

Then Avress | Whmovate v

HAUSHALT 1 - MAISON 1

0011.30D 0012.30D 0013.30D

<

0014.30D 0015.30D 0016.30D

0018.30D 0019.30D

0020.30D 0021.3CD 0022.300D

HAUSHALT 2 - MAISON 2

0023.30D 0024.300D 0025.30D

0026.3WD 0027.30D 0028.300D

0029.30D 0030.30D 0031.30D

0032.30D 0033.30D 0034.30D

HAUSHALT 3 = MAISON 3 GARTEN - JARDIN

0035.30D 0036.30D 0037.30D

0038.30D 0032.3CD 0040.3WD 0050.3CD 0051.30D 0052.30D

0042.30D 0043.30D

0044.30D 0045.30D 0046.30D

0054.30D

0057.3CD 0092.30D

GRO@BSTADT - CITE

0058.3WD

0060.30D 0061.30D

0063.30D 0064.30D

0066.30D. 0066.30D

SCHAUPLATZ - VUE

) i s "
0059.30D 0068.3WD 0069.3WD 0070.300D

0062.30D 0071.3wWD 0072.3WD 0073.3WD

0065.30D 0074.30D 0075.30D

0067.30D OO77.3WD 0078.30D 0079.3WD

TIERREICH - ANIMAUX

0080.3CD

0083.3CD 0084.30D 0085.30D

0086.30D 0087.30D 0088.3WD

0089.30D 0090.30D 0091.30D

WARNING

s & cnimenal oifé

PUBLISHED BY DOMARK SOFTWARE LTD.,
FERRY HOUSE, 51-57 LACY ROAD, PUTNEY, LONDON SW15 1PR

